
Table of Contents

The Acrobat User Page Actions
A Page Action automatically triggers when a particular page in your pdf file opens. They
are easy to create, although the means of doing so has been somewhat hidden since
Acrobat 6.

PostScript Tech Explicitly Masked Images, Part 1
PostScript languagelevel 3 introduced the ability of images
to include a 1-bit mask that indicates what parts of the
image should be painted.

Class Schedule July, August, September

What’s New? PDF 2 Class Now “Feature Complete”
More students signed up for pdf classes than for ps classes in the past year.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 43 © 2006 John Deubert, Acumen Training

John Deubert’s Acumen Journal, June 2006

Acrobat User

Acumen Journal: Acrobat User �

Page Actions
You should have heard a “tock” sound when you came to this page. Try it again; return to
the Journal’s first page and come back here. You should hear it again.

This sound is played by a page action, an action that is fired every time Acrobat displays
this page. Acrobat has supported page actions for quite a long time; if you read either
my Acrobat Forms or Acrobat JavaScript books (and why haven’t you?), we discuss page
actions fully and use them in several of the examples.

However, those books were written in the Acrobat 5 era. Acrobats 6 and 7 page actions
work substantially the same way, but access to them has been moved to a harder-to-find
location. Since one of the most common emailed questions I get regarding my books
is “Where the heck did page actions go?”, I thought we should review page actions in an
Acrobat 6 and 7 context.

Next page ->

Acrobat User

Acumen Journal: Acrobat User �

Making a Page Action In Acrobats 6 and 7, you attach an action to a page through the
Pages navigation pane on the left side of the document window.
Do the following:

1. Select the target page in the Pages pane.

2. Select Properties from the Options drop-down menu at
the top of the Pages pane. (Alternatively, you may right-
click on the page and select Properties from the resulting
contextual menu.)

 Acrobat will present you with the Page Properties dialog
box, below right.

3. Click on the Actions tab.

 You will now be looking at the a set of controls
similar to those for assigning actions to a
 button or form field.

4. Use the Select Trigger pop-up
menu to specify whether the
action should trigger when the
user enters the page or leaves the page.

Next page ->

Acrobat User

Acumen Journal: Acrobat User �

5. Select an action type in the Select action pop-up menu.

 Note that you have available to you all of the actions
that Acrobat supports; any action you can attach to a
button or other form field, you can also attach to a page.

 For this article’s first page, I selected “Play a sound.”

6. Click on the Add… button.

 Acrobat will present you with a dialog box appropri-
ate to the action you selected. In the case of Play a sound, Acrobat has us select an
 appropriate sound file. (Acrobat supports any sound file format that is known to
QuickTime, including wav and aif; the sound you select is converted to an internal
pdf format and embedded in the pdf file.)

 When you return from specifying the
 parameters for your action (selecting the
sound file in our case), the Actions panel will
reflect your choice of action.

 You may add additional actions to the page by
repeating steps 5 and 6 as often as you like.

Next page ->

Acrobat User

Acumen Journal: Acrobat User �

7.	 Click	on	the	Close	button.

	 Acrobat	will	return	you	to	the	document	page.

That’s	it;	we	have	now	attached	an	action	to	the	page.

A View Counter Let’s	look	at	a	second	example.	In	the	left	margin	of	this	page	is	a	box	that	tracks	how	
many	times	this	page	has	been	viewed.	Check	it	out:	go	to	the	next	page	and	return	
here;	the	number	will	have	incremented.	Furthermore,	if	you	close	this	document,	
reopen	it,	and	return	to	this	page,	the	number	will	increment	again;	the	count	survives	
across	closing	and	reopening	the	file.

In	this	case,	our	page	action	is	a	JavaScript	that	increments	a	global	variable.	The	
	variable	in	question	is	a	property	of	the	Acrobat	global object.	To	follow	this	discussion,	
you	should	first	reread	the	article	on	the	global	object	in	the	August	2004	Acumen	
Journal;	I	shall	assume	here	that	you	remember	how	to	manipulate	the	global	object.

I	attached	the	page	action	to	this	page	in	
exactly	the	way	I	described	earlier.	The	only	
difference	is	that	the	page	action	is	now	“Run	a	
JavaScript,”	rather	than	“Play	sound.”	When	you	
click	on	the	Add	button	(step	6	on	the	previous	
page),	Acrobat	presents	you	with	a	text	editor	
into	which	you	can	type	your	JavaScript.

Next	page	->

By the way...

Note	that	the	counter	
above	is	actually	a	button,	
rather	than	a	text	field.	This	
made	it	easier	to	attach	a	
“reset	counter”	script	to	it.	

http://www.acumentraining.com/AcumenJournal.html
http://www.acumentraining.com/AcumenJournal.html

Acrobat User

Acumen Journal: Acrobat User �

The JavaScript Our	page	JavaScript	increments	the	value	of	a	global	property	named	gPageCounter	and	
then	changes	the	label	of	a	button	named	btnCount,	which	is	the	number	you	see	on	
the	page.

Specifically,	JavaScript	does	the	following:

•	 Check	to	see	if	the	property	global.gPageCounter	already	exists.

-	 If	not,	create	it.

-	 If	so,	increment	it.

•	 Change	the	label	of	btnCount	to	be	“Page	count:	“	+	global.gPageCounter.

Here’s	the	page	JavaScript	code:

if (global.gPageCounter == null) { % Is property absent?
 global.gPageCounter = 1 % Yes: create it...
 global.setPersistent(“gPageCounter”, true) % & make it persistent
}
else
 global.gPageCounter++ % If property exists, increment it

var f = this.getField(“btnCount”) % Get a reference to the button
f.buttonSetCaption(“Page count: “ + global.gPageCounter) % Set caption

Pretty	easy,	actually.	Let’s	look	at	it	in	some	detail.

Next	page	->

Acrobat User

Acumen Journal: Acrobat User �

Step by step if (global.gPageCounter == null) {

If	global.gPageCounter doesn’t	exist,	its	value	as	seen	by	JavaScript	will	be	“null.”	We	
check	for	this	case	and	create	the	property	if	necessary.

 global.gPageCounter = 1
 global.setPersistent(“gPageCounter”, true)
}

You	remember	from	the	earlier	article	that	you	add	a	property	to	the	global	object	by	
simply	assigning	the	property	a	value,	1 in	this	case.

In	addition,	we	use	the	setPersistent	method	to	let	Acrobat	know	that	this	property	
should	survive	the	closing	of	the	document.	(If	we	didn’t	call	setPersistent,	the	property	
would	cease	to	exist	when	the	document	closed;	the	count	would	revert	to	1.)

else
 global.gPageCounter++

If	global.gPageCounter	exists	(that	is,	if	it	wasn’t	null),	we	simply	increment	its	value	with	
the	double-plus	operator.

var f = this.getField(“btnCount”)

Now	we	get	a	reference	to	the	button	field	that	displays	our	view	count.

f.buttonSetCaption(“Page count: “ + global.gPageCounter)

Finally,	we	set	the	caption	of	the	button	to	something	useful	for	the	user.	
	 	 	 	 	 	 	 	 	 	 	 	 	 Next	page	->

Acrobat User

Acumen Journal: Acrobat User �

You will notice, if you have read my earlier books, that page actions in Acrobat 6 and 7
are fundamentally the same as they were in Acrobat 5; the access to them has changed
significantly, though not unreasonably. (Many people complain that accessing page
actions through the Page navigation pane is counter-intuitive, since we tend to think of
a navigation pane as being for, well, navigating the document. True, perhaps, but I must
admit I can’t immediately think of any better place to put page actions.)

Return to Main Menu

Acumen Journal: PostScript Tech �

Explicitly Masked Images, Part 1
A couple of issues back (August 2004, to be precise), we
 discussed color key image masking, in which we print an image,
specifying that certain ranges of colors be left unpainted. The
two images at right, for example, are identical, except that in the
lower image the blue pixels are left unpainted.

PostScript languagelevel 3 supports a second type of image
masking, however: explicit masking. In this case, we supply, in
addition to the image data, a second, 1-bit image that specifies
what part of the image should be painted. This 1-bit image is
referred to as a mask and the combined image is a masked image.

For example, below a masked image is created from a photograph and a 1-bit text image.

This issue and next we shall see how to do this.

Next page ->

PostScript Tech

Acumen Journal: PostScript Tech 10

The image Operator Let’s start with a very brief review of how images are printed in PostScript. We discussed
this in your earlier PostScript classes, so you will find full coverage of this topic in your
student notes. (Please tell me you still have your students notes.)

Images are printed with the PostScript image operator. In Level 2 and 3, this operator takes a
single dictionary—an “image dictionary”—as its argument:

<< /ImageType 1
 /Width 450
 /Height 338
 /BitsPerComponent 8
 /ImageMatrix [450 0 0 -338 0 338]
 /DataSource currentfile /ASCIIHexDecode filter
 /Decode [0 1 0 1 0 1]
>> image
4C65BF4...

Briefly, the necessary key-value pairs are these:

/ImageType The type of image; normal, scanned images are of type 1.

/Width
/Height The number of pixels in each scanline and the number of scanlines in the image.

/BitsPerComponent
The number of bits associated with each color component in the image data.
Legal values are 1, 2, 4, 8, and 12. Next page ->

Explicitly Masked Images, Part 1

Acumen Journal: PostScript Tech 11

 A value of 8 for an rgb image indicates that each red, green, and blue will
consist of an 8-bit value.

/Decode Defines the mapping of data values (varying from 0 to 255, say) to color
 values. The array contains a pair of color values for each color component in
the image’s data; an rgb image will have three pairs of numbers. Each pair
of numbers indicates the color value that corresponds to the smallest and
 largest data values.

 Thus, for an 8-bit image, a Decode pair [0 1] indicates that data values 0 to
255 should be mapped to rgb color values 0 to 1.

/DataSource The source of the image data. It may be a file object, a string, or a data
acquisition procedure. (For the last, I refer you to your PostScript notes; it’s a
long story.)

 In our case, the DataSource is currentfile with the ASCIIHexDecode filter
attached; the image operator will read Hexadecimal image data in-line with
the PostScript code.

 Incoming image data is interpreted in terms of the current color space. To
print an rgb image, you would need to set the color space to DeviceRGB
before calling image.

Next page ->

Explicitly Masked Images, Part 1

Acumen Journal: PostScript Tech 1�

Explicitly Masked Images, Part 1

/ImageMatrix
A transformation matrix that specifies the size and position of the final printed
image, transforming the printed image’s position in User Space back to the
original data in Image Space. It’s a long story; look in your student notes.

 As a help, the image matrix will almost always be:

 [width 0 0 –height 0 height]

 where width and height refer to the width and height of the image data in
pixels, not the size of the printed image. This image matrix prints the image
as a 1-unit square at the origin. We need to precede our call to image with a
translate (moving the origin to our desired location for the image) and scale
(resizing a 1-unit square to the size we want for the printed image).

Does this all sound familiar?

Next page ->

Acumen Journal: PostScript Tech 1�

Explicitly Masked Images, Part 1

Masked Images Explicitly masked images have three components:

• An image dictionary, a standard ImageType 1 image dictionary
that draws the image.

• A mask dictionary, a 1-bit ImageType 1 dictionary that supplies
mask data, indicating what parts of the image should be printed.

• A masked image dictionary, an ImageType 3 dictionary that ties
together the image and mask dictionaries. This is the dictionary
you will hand to the image operator.

Let’s look at each of these three components in more detail.

ImageType 3 Dictionary An image dictionary of ImageType 3 must supply three pieces of information among its
key-value pairs:

• The image dictionary

• The image mask dictionary

• An indication of how the mask and image data will be integrated.

Next page ->

Acumen Journal: PostScript Tech 1�

Explicitly Masked Images, Part 1

Here is a typical ImageType 3 dictionary:

<< /ImageType 3
 /DataDict theImage
 /MaskDict theMask
 /InterleaveType 3
>> image

The key-value pairs here are as follows:

/ImageType This is a code that indicates what kind of image dictionary this is. In this case, we have a
type 3 image, indicating an explicitly masked image.

/DataDict The image dictionary. This is a standard image dictionary, exactly as described at the
beginning of this article.

/MaskDict The image mask dictionary. This is a nearly-standard image dictionary whose differences
we shall discuss below.

/InterleaveType This is a numeric code that indicates how the mask data and image data are being
 supplied. You may choose between having the mask and image data interleaved in a
single stream or having the mask be a completely separate image. This article will look
only at this last case, whose InterleaveType is 3.

Next page ->

Acumen Journal: PostScript Tech 1�

Explicitly Masked Images, Part 1

(If you’re curious about interleaved mask data, either see the PostScript Language
Reference Manual or take my Advanced PostScript class.)

Mask Dictionary The MaskDict entry in the ImageType 3 dictionary is an ImageType 1 dictionary that
 supplies the mask data. A typical mask dictionary will look something like this:

/theMask
<< /ImageType 1
 /Width 50
 /Height 50
 /BitsPerComponent 1
 /Decode [0 1]
 /ImageMatrix [50 0 0 -50 0 50]
 /DataSource <~s8W-!s8W-!s8W-!s6’F^s8W-!s8W-!s8W
 ...
 s8W-!s8W,Gs8W-!s8W-!s8W-!s3^~>
>> def

Most of this is similar or identical to a standard ImageType 1 dictionary, but there are a
few changes:

BitsPerComponent BitsPerComponent is restricted to a value of 1 in a mask dictionary. The mask values are
interpreted as either “paint” or “don’t paint.”

Next page ->

http://www.acumentraining.com/Descr_APS.html

Acumen Journal: PostScript Tech 1�

Explicitly Masked Images, Part 1

Decode In a mask dictionary, the Decode array contains a single pair of numbers, defining the
interpretation of the 1-bit mask data. The first value in the array indicates which 1-bit
value indicates “paint”; the second values indicates which value means “don’t paint.”

Our Decode value of [0 1] specifies that a value of zero will mean “paint.”

DataSource DataSource has the same interpretation in a mask dictionary as in a normal image
 dictionary. It must be associated with a file, string, or data acquisition procedure that
supplies the data. Note the way I constructed the string in the sample code:

/DataSource <~s8W-!s8W-!s8W-!s6’F^s8W-!s8W-!s8W
 ...
 s8W-!s8W,Gs8W-!s8W-!s8W-!s3^~>

This string is bound by <~ and ~>, delimiters that denote an ASCII85 String. Between the
delimiters are the bytes that should be placed into the string, encoded in ASCII85; the
final string will contain the unencoded bytes.

This way of expressing a binary string is smaller than the more-common hex string,
constructed with <angle brackets>. Hex strings are double the size of the binary data;
ASCII85 strings are only 125% of the binary data size.

If the masked image’s InterleaveType indicates that the mask data is interleaved with the
image data, then the mask dictionary will not have a DataSource entry; the mask data
will be supplied by the image dictionary’s DataSource entry.

Next page ->

Acumen Journal: PostScript Tech 1�

Explicitly Masked Images, Part 1

Image Dictionary I don’t have anything to add regarding the image dictionary to what I have said so
far. The image dictionary is an entirely standard Type 1 image dictionary, exactly as
described earlier.

An Example Let’s look at a simple example:

/theImage % The image dictionary
<< /ImageType 1
 /Width 20
 /Height 20
 /BitsPerComponent 8
 /Decode [0 1 0 1 0 1]
 /ImageMatrix [20 0 0 -20 0 20]
 /DataSource <~J3Vsg2B$8a*s)Ec5QD3F*=E
 ...
 ^)D\bm3\<!ph%’7Z3aZ->D/.@~>
>> def

/theMask % The mask dictionary
<< /ImageType 1
 /Width 50
 /Height 50
 /BitsPerComponent 1
 /Decode [0 1] % Zero mask values will paint
 /ImageMatrix [50 0 0 -50 0 50] Next page ->

File on Server

As usual, this sample pro-
gram is available on the
Acumen Training Resources
page. Look among the
PostScript samples for
SimpleMaskedImages.ps.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech 1�

Explicitly Masked Images, Part 1

 /DataSource <~s8W-!s8W-!s8W-!s6’F^s8W-!s8
 ...
 s8W-!s8W,Gs8W-!s8W-!s8W-!s3^~>
>> def

100 400 translate % Image location
-1 -1 62 62 rectstroke % Draw a black border
60 60 scale % Image size

/DeviceRGB setcolorspace % The masked image dict.
<< /ImageType 3 % Print the masked image
 /DataDict theImage
 /MaskDict theMask
 /InterleaveType 3
>> image

The masked image dictionary and the mask dictionary are exactly the ones we saw earlier.
The image consists of a simple 20x20 image of randomly-colored pixels.

Step-by-Step /theImage
<< /ImageType 1
 ...
>> def

We start by defining the image dictionary. This is in every way a standard ImageType 1
dictionary. In our case, the image is a 20x20 array of randomly-colored pixels.

Next page ->

Acumen Journal: PostScript Tech 1�

Explicitly Masked Images, Part 1

/theMask
<< /ImageType 1
 ...
>> def

We then define the mask dictionary, which will supply the mask data. This, too, is an
ImageType 1 dictionary, subject to the changes we discussed earlier.

Note that the image and mask are different dimensions (20x20 and 50x50, respectively).
This is perfectly alright; the image and mask will both be mapped into the same 1-unit
square at the origin, which will be converted to a final position and size by the translate
and scale that precede the call to image.

Also note that the Decode array we used,

/Decode [0 1]

specifies that painted areas within the masked image
will be denoted by 0 mask values—black pixels if we
were to print the mask data as an image. Similarly,
“white” areas in the mask correspond to unpainted
areas in the final masked image.

Had we reversed the array,

/Decode [1 0]

we would have reversed the interpretation of “black” and “white” mask
 values, as at right. Next page ->

Acumen Journal: PostScript Tech �0

Explicitly Masked Images, Part 1

100 400 translate
-1 -1 62 62 rectstroke
60 60 scale

The ImageMatrix used by our images will print the entire masked image as a unit square
at the origin. Left to itself, this would be a 1/72-inch square at the lower-left corner of the
paper; this is probably not what we want. So, we do the following:

• A translate to move the origin to the location on the page where we want the image.

• A scale that changes the size of a unit square from 1/72 of an inch to the size we want
for the painted image.

In between, we make a call to rectstroke so that we get a border around our image.

/DeviceRGB setcolorspace

Because we have an rgb image, we set the current colorspace to DeviceRGB. This tells
the image operator how to interpret the image data.

<< /ImageType 3
 /InterleaveType 3
 /DataDict theImage
 /MaskDict theMask
>> image

Finally, we create an ImageType 3 dictionary and hand it to the image operator.

Next page ->

Acumen Journal: PostScript Tech �1

Explicitly Masked Images, Part 1

A Problem In the above example, the DataSource entries in the image and mask dictionaries were
each associated with a string that contained the associated data.

 /DataSource <~s8W-!s8W-!s8W-!s6’F^s8W-!s8...-!s3^~>

Unfortunately, this will not work for arbitrary images, since their data will typically not fit
within a PostScript string. (These have a limit of 64k, you may recall.)

Standard images get around this by using currentfile for their data sources, usually with
an attached filter. They then place the image data in-line with the PostScript code, as we
did in our first example in this article.

 ...
 /DataSource currentfile /ASCIIHexDecode filter
 >> image
 4C65BF4...

Unfortunately, this technique will not work for masked images, since they need to simul-
taneously process two separate streams of data (the mask and the image).

The solution to the problem is to store both the image and mask data into vm using the
ReusableStreamDecode filter.

However, we’re out of space this month, so we’ll see how to do this next time.

Return to Main Menu

Schedule of Classes, July–September 2006
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class on
the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student. Registration Info

PDF File Content
and Structure 1

Jul 10–13

Sept 18–21

PDF File Content
and Structure 2

Aug 14–17

PostScript
Foundations Jul 17–21 Sept 4–8

Variable Data
PostScript

Advanced
PostScript Aug 7–10

PostScript for
Support Engineers

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule

New
!

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html

Acrobat Class Schedule

Regretfully, I have suspended teaching Acrobat classes.

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

PDF 2 Class is
now complete The tweaking of the PDF File Content and Structure 2 class is finished and, in particular,

the class’ topic list is now complete. The course has been taught a half-dozen times and
is now running very well. The final course outline is as follows:

 • Review of PDF file structure • Transfer Functions
• Determining Interiors • Halftoning
• Line-drawing Details • Printers’ Annotations
• XRef and Object Streams • Marked Contents
• External File References • Form Fields
• Masked images • Multibyte Fonts
• Function Dictionaries • Linearized PDF
• Shading • Optional Content Groups
• Rendering Parameters

Most of these topics are relatively long, taking an hour or more (sometimes a lot more)
to discuss.

For more information, see the course description on the Acumen Training website.

 Return to First Page

What’s New?

Acumen Journal: What’s New?

http://www.acumentraining.com/Descr_PDFFCS2.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
 particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you reflect
on the brevity and futility of life?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	btnCount:
	btnHome:
	btnPrevPage:
	btnNextPg:
	btnNextPage:
	Button1:

