
Table of Contents

The Acrobat User Adding Printer Marks to a Document in Acrobat 8
Acrobat 8 has a useful collection of tools aimed at professional
print production. Among the features available through the Print
Production Toolbar is the ability to add crop marks and other printer
marks to a pdf document.

PostScript Tech PostScript Resources, Part 2
This month, we continue our discussion of PostScript resources,
learning how to store fonts, forms, and other resources on a rip’s
hard disk for use by later PostScript programs.

Class Schedule April, May, June

What’s New? A new 2–day course: Support Engineers’ PDF
Acumen Training’s curriculum expansion continues with this two-day
course on pdf for support engineers.

Contacting Acumen Telephone number, email address, postal address

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, April 2007

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User	 �

Acrobat User

Adding Printer Marks With Acrobat 8
“Printer marks” is a generic term for crop marks,
registration marks, color calibration bars, and
other graphic features necessary to the printing of
professional documents. These marks are used in the
common case that a document is printed on paper (or
other media) that is larger than the document’s final
page size. The marks reside on the paper outside the
boundary of the document page.

These marks are often placed on the page by the
application that is used to create the pdf document;
however Acrobat can also add these marks to the
pages of an existing pdf file.

This is the topic of this short Guide: how to place
printer marks on a pdf page using Acrobat 8.

Next Page ->

Acrobat 6 and 7

This article describes how
to add printer marks using
Acrobat 8. However, Acrobat
7 and 6 could also add print-
er marks to a document.

This article’s instructions to
apply to Acrobat 7 more-or-
less unchanged. You will find
differences in the layouts
of the dialog boxes, but the
functionality is pretty much
the same.

Acrobat 6 can add printer
marks to the pdf file only
at print time. The Print
dialog box has an Advanced
Options button that takes
you to a dialog box that,
among other things, allows
you to add printer marks to
the printed document.

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 �

Adding Printer’s Marks With Acrobat 8

The Print Production Toolbar
You add printer marks with the Printer Marks tool in the
Print Production toolbar, pictured at right. This toolbar
hosts a variety of tools intended for the professional
printing of Acrobat files; the tools here allow you to, among other things, soft proof the document’s
colors, convert colors from one color space to another (rgb to cmyk, for instance), and specify trapping
parameters.

Of interest to us in this article is the Printer Marks tool. When you click on this tool, Acrobat presents
you with the Add printer Marks dialog box, below right.

This dialog box is pretty straightforward; simply select the
specific marks you want added to the document and the pages
to which you want them added. When you click the ok button,
Acrobat will add the marks to the document and return you to
the document window.

Types of Printer Marks Most of the checkboxes in this dialog box are reasonably self-
explanatory; trim marks, bleed marks, registration marks, and
color bars are pretty standard in the industry. (You can see
these in place on the previous page’s illustration.) A couple of
the available selections are perhaps less immediately obvious.

Page Information
This will place on the page the name of the pdf
file, the current date and time, the page number,
and the color plate.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		�

Adding Printer’s Marks With Acrobat 8

Embed printer marks with Layers
The printer marks will be placed in their own layer
within the pdf file so that they can be hidden
or made visible all at once using the Layers
navigation pane (shown at right).

	 Clicking in the “eye” control next to the “Marks &
Bleeds” name will toggle the visibility of the printer
marks in the document.

Expand page to fit marks
Alright, so this one is pretty clear. If you select this checkbox, Acrobat will expand the page
to include the printer marks. If you don’t select this control and if your document doesn’t
have a trim box (more on that in a moment), then the printer marks will be placed on top
of the page content, which is not usually what you want.

Selecting a Page Range The Add Printer Marks dialog box provides a set of self-explana-
tory controls that let you specify the set of pages to which the
printer marks should be added. You can select a page range
and, within that range, specify whether the marks should be
applied to even pages, odd pages, or both.

The Trim Box This has all been pretty easy. We’ve been ignoring one point, however. Printers marks should be placed on
the paper, but outside of the boundary of the document page. How does Acrobat know where the border
of the document page lies on the paper?

The answer is: it looks for the presence of a Trim Box in the pdf document.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 �

Adding Printer’s Marks With Acrobat 8

The Trim Box defines the boundaries of the document page within a pdf file. The pdf file specification
defines a total of 5 rectangular regions that may be defined in a pdf file, including the Media Box, which
defines the size of the paper on which the document is laid out, and the Bleed Box, which defines the area
occupied by the marks on the paper; all of these are optional except the Media Box.

In particular, the Trim Box may be missing from a document, in which case Acrobat will not know where
on the paper the document page lies; it will treat the entire paper as the document page, which forces
Acrobat to put the printer marks on top of the page contents.

If the document page is smaller than the pdf file’s paper size, Acrobat needs a Trim Box; if that box is miss-
ing, we must add it. Happily, this is pretty simple; we
can add a Trim Box using the Boxes tool in the Print
Production toolbar. Note that you must do this before
you place printer marks on the page.

Adding a Trim Box When you click on the Boxes tool,
Acrobat presents you with the
somewhat misnamed Crop Pages
dialog box.

This dialog box allows you to specify
the locations and dimensions of
several of the rectangles pdf under-
stands, including the Trim Box.

To set the Trim Box in your pdf doc-
ument, do the following:

1.	 Select TrimBox in the uppermost
pop-up menu.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 �

Adding Printer’s Marks With Acrobat 8

2.	 In the Top, Bottom, Left, and Right text
boxes, enter the values you want for
the “margins” that define your Trim
Box. (That is, the distance from that
side of the Trim Box to the edges of
the paper.)

	 Alternatively, you can click on the tiny
up and down arrows to the right of
each text box to change the value of
that margin.

	 As you change the values of the margins, Acrobat displays a green rectangle in the dialog box’s
preview pane, showing you where the trim box lies. At right, I’ve set the Trim Box to enclose the
artwork in the document; note the green box surrounding the page’s graphics.

	 Specify the units of measure you want to use (inches, millimeters, etc.) using the Units pop-up menu.

Some Shortcuts As a convenience, the Crop Pages dialog box provides a couple of sets of controls to select common
actions related to the Trim Box:

•	 The Remove White Margins checkbox (grayed out in the illustration above), sets the Trim Box to exactly
enclose all of the marks on the pdf page.

•	 Change Page Size changes the size of the paper
on which the pdf document is placed. This
doesn’t change the Trim Box; rather it changes
the paper on which the document page is
placed; this allows you to replace the existing
8½" x 11" paper size with A4, for example.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		�

Adding Printer’s Marks With Acrobat 8

Crop marks are among those items it is very easy to forget when creating a document. They aren’t hard to
create in most design applications, but it is a nuisance to have to go back to the original InDesign file (or
whatever) if you notice they are missing.

Happily, Acrobat 8 has made it very easy to add these marks.

Return to Main Menu

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		�

PostScript Tech

PostScript Resources, Part 2
Last month, we discussed the nature of PostScript resources and how to create and retrieve fonts, forms,
and other data that have been stored as resources.

What we did not convincingly demonstrate is why you would want to store fonts or forms as a resource at
all, rather than just as a variable. This is the question we shall answer today. The secret lies in having a rip
with a hard disk available to it.

You should read the first part of this article in the January 2007 Journal before proceeding with this part.

Last Month We finished up Part 1 by creating a Form resource. This entailed creating a form dictionary and turning it
into a resource of type Form with a call to defineresource:

/SquareForm	 <<
	 /FormType 1
	 /BBox [0 0 100 100]
	 /Matrix [1 0 0 1 0 0]
	 /PaintProc { 0 0 100 100 rectfill } bind
>> /Form defineresource

We could then retrieve the form dictionary for use with execform by calling findresource:

/SquareForm /Form findresource execform

To make this Form resource (or any resource) truly useful, we should store the resource definition on the
rip’s hard disk.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 �

PostScript Tech

Acumen Journal: PostScript Tech		 �

PostScript Resources, Part 2

Disk-Based
Resources The PostScript findresource operator (and its older, more-specific cousin, findfont) looks for a requested

resource in all the places that resources may be stored on the specific PostScript device. In particular, if the
resource is not found in vm, then findresource will do the following, assuming that the rip has a hard disk
available to it:

•	 Algorithmically derive a file name from the names of the requested resource and the name of the
resource category (“Optima” and “Font,” for example).

•	 Look for a file with that name.

•	 If the file exists, execute the contents of the file.

The file is presumed to contain the PostScript code that creates the resource.

Thus, if you ask for a Form named SquareForm with a call to findresource:

/SquareForm /Form findresource

The rip will examine vm to see if the form is available there; if not, the rip will derive a file name from the com-
bination of the category and resource names (probably something like “/resources/Form/SquareForm”) and
execute the file, if it exists. This file must contain the PostScript code that creates the SquareForm resource:

/SquareForm	 <<
	 /FormType 1
	 /BBox [0 0 100 100]
	 /Matrix [1 0 0 1 0 0]
	 /PaintProc { 0 0 100 100 rectfill } bind
>> /Form defineresource

Once the PostScript interpreter executes this code, it will have access to the form dictionary.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 10

PostScript Tech

Acumen Journal: PostScript Tech		 10

PostScript Resources, Part 2

Note that the code in the file must end with a call to defineresource, which leaves a copy of the newly-created
resource data on the stack.

To store a resource on a rip’s disk, we must somehow determine the name of the file the rip will look for
when it needs to load that resource. This will differ from one rip to another and will not necessarily be
something we can guess. (Some rips still use eight-dot-three file names, for example.)

Resource Filenames Happily, the function that a rip calls to derive a resource’s filename is accessible to us; this function—a
PostScript procedure—is stored in the resource Category dictionary.

The Category Category At right is a table of the Regular resource categories
defined by PostScript. Notice that among these is
a category named Category. This resource type is
what defines the resource categories recognized by
PostScript; that is, resource categories are themselves
managed as resources. Resources within the Catagory
category have names like “Font,” “Form,” “Pattern,” etc.

The data associated with each Category resource is a dictionary that contains procedures that dictate
how the PostScript resource operators should behave when applied to a resource of that category.
Particular to our purpose is a procedure named ResourceFileName.

/ResourceName (scratch) ResourceFileName => (pathname)

This procedure takes as its arguments the name of a resource and a scratch string; it returns the pathname
to the file that should contain the definition of that resource. (The resource category is implicit, since the
procedure is fetched from that category’s Category dictionary.)

This is the procedure that findfont, selectfont, and findresource use to search for a resource definition. We
can use this procedure ourselves to store a resource definition where those operators will find it.
																 Next Page ->

Regular Resource Categories

Font 			 Encoding 		 Form
Pattern 		 ProcSet 		 ColorSpace
Halftone 		 Category 		 Generic
ColorRendering 	 FontSet		 InkParams
TrapParams		 IdiomSet

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 11

PostScript Tech

Acumen Journal: PostScript Tech		 11

PostScript Resources, Part 2

All we need to do is:

1.	 Get ResourceFileName out of the appropriate Category resource dictionary.

2.	 Execute the procedure, which gives us the pathname to the target file.

3.	 Open a file with that pathname.

4.	 Write the resource definition (ending in a call to defineresource) into the file.

5.	 Close the file.

That’s it; once we have done this, the resource will be available to findfont and findresource on that rip.

Let’s see how to do it.

 The Code The following code defines a procedure named WriteResource, which takes the names of a resource name
and category as its arguments and writes the resource definition to the rip’s hard disk. The resource
definition is read from currentfile, and so must follow the invocation of WriteResource in the PostScript code.

The example uses WriteResource to write our SquareForm Form resource to disk.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 12

PostScript Tech

Acumen Journal: PostScript Tech		 12

PostScript Resources, Part 2

/inbuf 4096 string def
/scratch 100 string def

/WriteResource	 	 	 	 % Stack: /resname /restype =>
{ /Category findresource begin	 	 % /resname
	 scratch ResourceFileName	 	 % (pathname)
	 end	 	 	 	 	 	 	 % (pathname)
	 (w) file	 	 	 	 	 	 % fileobj
	 /dest exch def		 	 	 	 % ---
	 { currentfile inbuf readstring	% (data) bool
	 	 dest 3 -1 roll writestring	 % bool
	 	 not {exit} if 		 	 	 % ---
	 } loop
	 dest closefile
} bind def

% The PostScript code following “WriteResource” will be written to disk.
/SquareForm /Form WriteResource
/SquareForm	 <<
	 /FormType 1
	 /BBox [0 0 100 100]
	 /Matrix [1 0 0 1 0 0]
	 /PaintProc { 0 0 100 100 rectfill } bind
>> /Form defineresource

Having executed the above PostScript code, the rip will forever after be able to use the SquareForm
resource with a simple call to findresource. A future PostScript file could use the form thusly:

/SquareForm /Form findresource execform

Let’s see how this file works in detail.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 13

PostScript Tech

Acumen Journal: PostScript Tech		 13

PostScript Resources, Part 2

Step by step /inbuf 4096 string def
/scratch 100 string def

We start by defining pair of strings: inbuf will serve as the input buffer for reading PostScript code from
currentfile; scratch will be the string required by the ResourceFileName procedure. (We could have used the
same string for both purposes, thereby saving a bit of vm, but the code is clearer this way.)

/WriteResource		 % /resname /restype =>
{ /Category findresource begin		 % Stack: /resname

The WriteResource procedure starts by pushing the name Category onto the stack and then fetching the
Category resource dictionary with a call to findresource. Note that WriteResource receives the name of the
resource category (“/Form”) as an argument.

The findresource operator returns a category dictionary on the Operand stack, which we move to the
Dictionary stack with a begin. This allows us to access the contents of the category dictionary simply by
referring to the name.

scratch ResourceFileName			 % => (pathname)

At this point, the name of the resource (“/SquareForm”) is still on top of the Operand stack; we push our
scratch string on top of the stack and call ResourceFileName. This procedure, resident in the category
dictionary, returns the scratch string, now holding the pathname of the file into which we should store
the resource definition.

end

We are finished with the category dictionary, so we can remove it from the Dictionary stack. This line has
no effect on the Operand stack, which still holds the pathname.

(w) file							 % => fileobj

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 14

PostScript Tech

Acumen Journal: PostScript Tech		 14

PostScript Resources, Part 2

Our next step is to open the appropriate file on the rip’s hard disk. We shall do this with a call to the file operator:

	 (pathname) (access) file => fileobj

The pathname is already on the stack, so we push the string (w), which specifies we want to open the
file with write permission. The file operator then opens the file, returning the PostScript fileobject that
represents the open file.

/dest exch def					 % => ---

We save the fileobject with the name dest.

{ ... } loop

Now we start our indefinite loop. Each time through this loop, we want to read a bufferful of PostScript
code, write that code to dest, and then check to see if we are at end-of-file, exiting the loop if so.

currentfile inbuf readstring		 % => (PS Code) bool

The loop starts by reading data from currentfile using readstring. The operator leaves on the stack inbuf,
now full of PostScript code, and a boolean that will be false if we are at the end of the input stream.

dest 3 -1 roll writestring			 % => bool

We now write the string of PostScript code to our target file with writestring.

	 fileobj (data) writestring => ---

The data string is already on the stack; we push our fileobject, dest, on the stack and then put them in the
correct order with roll. Our call to writestring then writes the PostScript code to disk.

This line leaves on the stack the boolean returned by readstring; remember that a false value indicates we
are at the end of the input stream.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 15

PostScript Tech

Acumen Journal: PostScript Tech		 15

PostScript Resources, Part 2

	 not {exit} if
} loop

Our loop ends by reversing the readstring boolean with a not and exiting the loop if the reversed boolean
is true.

	 dest closefile
} bind def

Finally, our WriteResource procedure ends by closing our destination file.

Now, we can use our new procedure to write resources to the rip’s hard disk.

/SquareForm /Form WriteResource

We push the names /SquareForm (the resource name) and /Form (the category name) onto the operand
stack and execute WriteResource. The Procedure executes its loop, repeatedly reading the input stream
and writing the data to the destination file.

The PostScript code following the invocation is the definition of the SquareForm Form resource:

/SquareForm	 <<
	 /FormType 1
	 /BBox [0 0 100 100]
	 /Matrix [1 0 0 1 0 0]
	 /PaintProc { 0 0 100 100 rectfill } bind
>> /Form defineresource

The code you write to the file can do pretty much anything you wish, as long as it ends in a call to
defineresource.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 16

PostScript Tech

Acumen Journal: PostScript Tech		 16

PostScript Resources, Part 2

Font Downloaders Note that our WriteResource procedure is the PostScript basis for a typical PostScript font downloader. You
can use this procedure to write font definitions, taken from a pfb file, to disk and that file will be available
to all future PostScript programs. You will need to extract the PostScript code from the pdf file and then
save that PostScript as a Font resources. (The article “Converting PDF Files to PostScript” in the September
2002 Acumen Journal describes how to extract the PostScript from a pdf file.)

Return to Main Menu

http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 17

PostScript & PDF Class Schedule

Schedule of Classes, March–May 2007
Following are the dates of Acumen Training’s upcoming PostScript and PDF classes. Clicking on a class name
will take you to the description of that class on the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide. See the Acumen
Training web site for more information.

Course Fee Classes cost $2,000 per student, except for Troubleshooting PostScript, which is $1,500 per student.
There is a discount for signing up three or more students. If you have four or more students that need to take a
class, it will almost certainly be cheaper to arrange an on-site class.

		 Registration Info

PDF 1: File Content
and Structure

Apr 30–May 3

Jun 18–21

PDF 2: Advanced
File Content

Jun 4–7

PostScript
Foundations May 7–11

Variable Data
PostScript

Advanced
PostScript Apr 9–12

Troubleshooting
PostScript May 30-Jun 1

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html

Acumen Journal: PostScript Tech		 18

Contacting John

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 19

What’s New

What’s New at Acumen Training?

Support
Engineers’ PDF Support Engineers’ PDF is a two-day, hands-on, technical introduction to the pdf file format. It discusses the

basics of the structure and contents of a pdf file, emphasizing those parts of the pdf specification most
important to printed documents. The course is a good, quick introduction to pdf structure for people who
need to examine and diagnose troublesome pdf files.

Note that this is a class in the pdf file structure, not the use of Adobe Acrobat. The course does examine
some commercial tools that are useful in the diagnosis of pdf problems.

Course Outline
Day 1 	 •	 PDF Data Types			 • Simple Drawing

•	 PDF Objects			 • Introduction to Color
•	 PDF File format			 • Drawing Text
•	 The Page Tree			 • Coordinate Transforms
•	 Content Streams			 • Compression & Transmission Filters

Day 2 	 •	 Color and Color Spaces		 • PDF Font Structure
•	 Image XObjects			 • Examination of Common PDF Files
•	 Form XObjects			 • PDF/X & PDF/A
•	 Transparency			 • PDF Troubleshooting Tools

Availability Support Engineers’ PostScript will be available June 2007. Watch the Acumen Training website for pricing
and schedule of classes.

				 											 Return to First Page

Acumen Journal: PostScript Tech		 20

Feedback

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In particular, I am looking
for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information? Was it well written
and understandable? Do you like it, hate it? Did it seem to have been inexpertly translated from Japanese?

Suggestions for articles. Each Journal issue contains one article each on PostScript and Acrobat. What
topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript? Feel free to email
me about. I’ll answer your question if I can. (If enough people ask the same question, I can turn it into a
Journal article.)

Please send any comments, questions, or problems to:

			 john@acumentraining.com

Return to Main Menu

mailto://john@acumentraining.com

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007Add Printer Marks Diaog Box

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007Crop Pages Dialog Box

	btnHome:
	btnPrevPage:
	btnNextPg:

