
Table of Contents

The Acrobat User Submitting Form Data
Seven times out of ten, Acrobat.com is the best way to collect information from users filling out your pdf form.
What do you do the other three times? This month we look at creating a Submit button in our form.

PostScript Tech Logging Diagnostic Information
Debugging PostScript programs has always depended on 1970’s debugging techniques. In the absence of
such luxuries as ides and source code debuggers, we often end up printing diagnostic strings to stdout. This
month, I present the procedures I use to conveniently emit such debugging information.

PDF Nuggets Informational nuggets about the pdf file format.

Class Schedule August–September–October

What’s New? New JavaScript eBook Coming
An update to Extending Acrobat Forms with JavaScript
is in the works.

Contacting Acumen Telephone number, email address, postal address

Acumen Journal, Issue 62 © 2011 John Deubert, Acumen Training			�

John Deubert’s Acumen Journal, July 2011

Journal feedback: suggestions for articles, questions, etc.

1.1

Acumen Journal: PostScript Tech		 2

PostScript Tech

Acumen Journal: PostScript Tech		 2

Logging Debugging Information
Debugging PostScript code uses an awful lot of the debugging techniques that we otherwise left behind
decades ago, when source code debuggers and similar tools became readily available. One common
technique, when figuring out where a piece of code is going wrong, is to write diagnostic information to a log
file or, if the interpreter I’m using doesn’t let me create files, to stdout.

In this issue, I’m going to present a small set of PostScript procedures that I use to log diagnostic information.
These procedures let me send text to either stdout or to a separate file on the rip’s hard disk, if the PostScript
device makes that possible.

The Simplest Case At its most basic, you really don’t need any procedures to send information to stdout. A common technique
for locating a bug in PostScript code is to emit a series of marker strings, like this:

100 200 moveto

... Many lines of PostScript Code

(A) =

... Many lines of PostScript Code

(B) =

... Many lines of PostScript Code

(C) =

... Many lines of PostScript Code

... etc.

When we execute the code, the log file (or whatever is the target for stdout on that interpreter) will receive
letters A, B, and so forth until the error takes place:

Sample Files

As usual, the PostScript
code for this month’s article
is available on the Acumen
Training Resources page.
Look for the file LogFile.ps.

http://www.acumentraining.com/Resources.html

Acumen Journal: PostScript Tech		 3

Logging Debugging Information
A

B

Error: typecheck OffendingCommand: get

From the output, we can see that the error occurs somewhere between the (B) and (C) markers in the code.

So, Why Do We
Need Procedures? What I want to be able to do, that a simple series of “=” calls won’t give me, are two things:

•	 I’d like to be able to redirect the diagnostic information to a my own log file on the rip’s hard disk, if the
interpreter allows it.

•	 If I’m sending to stdout, I’d like my diagnostic information to be isolated from any other messages that the
rip emits, so I can see them easily. That is, rather than:

	 [Page 1]

	 A

	 B

	 [Page 2]

	 C

	 %== Warning: ThongUndies-Bold not found, substituting Courier

	 D

	 [Page 3]

	 ... and so on

	 I’d prefer my diagnostic information to be at the end:

	 [Page 1]

	 [Page 2]

	 %== Warning: ThongUndies-Bold not found, substituting Courier

Acumen Journal: PostScript Tech		 4

Logging Debugging Information
	 [Page 3]

	 =======Begin Log Output========

	 A

	 B

	 C

	 D

	 This isn’t just tidiness; if I’m debugging a sizable PostScript stream, my diagnostic log entries can be
scattered among a very large wad of irrelevant (to me) output. It’s much more convenient if the log text is
all together at the end of the stdout stream.

I think of the four procedures I present here as the LogFile procset, although I don’t define them as a formal
ProcSet resource; I never felt the need to do so, somehow.

The Procedures The LogFile procset consists of four procedures that let you open, close, and write data to the log file. The
procedures are

LogOpen	 % (filename) => – – –		 Opens the log file (or stdout)

LogClose	 % – – – => – – –		 Closes the log (duh!)

LogWriteString	 % (str) => – – –			 Writes a string to the log

LogWriteData	 % anyObj (label) boolEOL => – – –
Converts the object to a string and writes it to the log, preceded by the label and followed by
an end-of-line of boolEOL is true.

Here are the definitions:

Acumen Journal: PostScript Tech		 5

Logging Debugging Information

LogOpen The LogOpen procedure, as you would expect, opens the log file. It takes the name of the log file, as a string, from
the stack and opens that file with write permission. If the name is an empty string (), it creates a NullEncode
filter attached to a 10 k string; we’ll use this as a virtual file to which we can write our diagnostic information.

/LogOpen	 % (filename) => ---

{	 /lfLogFileName exch def				 % Save the file name

	 /lfUseStdOut lfLogFileName () eq def	 % Test the name to see if it’s ()

	 lfUseStdOut							 % Is the name ()?

	 {

		 /lfOutputString 10000 string def	 % Yes: create a 10k string...

		 /lfLogFile lfOutputString /NullEncode filter def	 % ...& attach NullEncode

	 }

	 {

		 /lfLogFile lfLogFileName (w) file def	 % No: Open the named file

	 } ifelse

	 % Write a “Beginning of Log” string, using the LogWriteString procedure

	 (=== Begin Log File Output ===\n) LogWriteString

} bind def

LogClose LogClose closes the log file and then, if the log file was the NullEncode filter, writes the underlying string buffer
to stdout. Note that this procedure uses a variable, lfUseStrOut, that was created by the LogOpen procedure.

/LogClose	% --- => ---

{	 (==== End of Log File Output ===\n) LogWriteString	 % Write a final string

	 lfLogFile closefile					 % Close the file

	 lfUseStdOut { lfOutputString = } if	% Write the output string to stdout,

} bind def								 % 					 if appropriate

Acumen Journal: PostScript Tech		 6

Logging Debugging Information

LogWriteString The LogWriteString procedure writes a string to the log file. It’s pretty simple:

/LogWriteString	 % (str) => ---

{ lfLogFile exch writestring } bind def

LogWriteData And, finally, LogWriteData takes an object of any sort, a label string, and a boolean and writes the object to the
log as a string, preceded by the label. If the boolean is true, the procedure follows the data with a newline.

Thus,

	 96 (The height is) true LogWriteData

would result in the following text being written to the log:

	 The height is 96<nl>

Here’s the definition:

/LogWriteData 	 % obj (Label) boolAddEOL => ---

{	 3 1 roll				 % Roll the boolean to the bottom of the stack

	 LogWriteString			 % Write the Label to the log

	 30 string cvs			 % Convert the data to a string...

	 LogWriteString			 % ...and write it to the log

	 { (\n) LogWriteString } if	 % Write a newline if the boolean was true

} bind def

You may feel queasy about the 30 string in the above code; It looks as though this would be an ongoing
memory leak, because every time we execute LogWriteData we allocate a new string. This turns out to be
okay; we create the string and immediate hand it to the cvs operator, after which it becomes inaccessible. In
cases like this, PostScript immediately reclaims the vm used by the string.

Acumen Journal: PostScript Tech		 7

Logging Debugging Information

To use the log procset to examine a piece of problematic PostScript, we do the following:

1.	 Put a call to LogOpen at the beginning of the code.

2.	 Add a call to LogClose at the end of the code.

3.	 Add calls to LogWriteData or LogWriteString as needed to examine the execution of the PostScript code.

The code would end up looking like this:

	 (/MyTestLog.log) LogOpen

	 % Here’s your test code

	 ... PostScript code

	 (A) LogWriteString

	 ... PostScript Code

	 (This is a test) LogWriteString

	 243 (Here’s a number:) true LogWriteData

	 LogClose

The log file would have the following in it, following whatever text is generated by the PostScript program itself:

	 === Begin Log File Output ===

	 A

	 This is a test

	 Here’s a number: 243

	 === End of Log File Output ===

Acumen Journal: PostScript Tech		 8

Logging Debugging Information

Final Notes
Distiller Acrobat Distiller 9 and X will not let your PostScript code create files on the local hard disk. Thus, if I absolutely

must have a separate log file, I use Distiller 8 to test my code. If I’m using a later version of Distiller, then I send
my diagnostic information to stdout.

So, When Do I Use It? Truth be told, I don’t use this procset too often; mostly, I just scatter =’s through my code as needed. I press
the procset into service when I’m working on something that needs extensive debugging. I used it a lot, for
example, when I was working on the examples for the Variable Data PostScript class.

Acumen Journal: PostScript Tech		 9

Acrobat User

Submitting Form Data
I’m a big fan of Acrobat.com. In particular, when I’m sending a form to a collection of people, gathering
information about their training-related opinions, desires, and fantasies, I pretty much always use Acrobat.com
to distribute the form and collect the responses.

However, there are some forms that I just post on Acumen Training website without a specific distribution list
in mind. In this case, I don’t particularly want Acrobat.com to maintain information about the form. So, how do
you collect the data from such a form?

Well, you must create a Submit button; this is a button (actually named anything you like) that, when clicked,
sends the form data to a url or email address.

If you send the data to a url, you need to have a script at that site waiting for the form data; that script should
read the data and do something useful with it, usually place it in a database. That’s often more trouble than
I want to bother with; it’s usually better to just have the form email the user’s responses to me. I receive the
message with the form data attached and I can do whatever I want with it. (Often, I just eyeball the data and
make a couple annotations in an electronic notebook I keep.)

Creating a button that will send form data to you as an email attachment is really easy, so today I’m going to
show you how to do it.

Strap in and let’s get started.

Creating a
Submit Button Again, our goal is to create a button that, when clicked will email a form’s data to us in one of two ways:

•	 As an fdf (“form data format”) file.

	 This is a small file that contains the user’s responses to all of the form fields in the document. We can then

This Article Assumes…

…that you have some
knowledge of creating
Acrobat forms. In particular,
I assume you can create
a basic form with text
fields, drop-down lists, and
buttons.

Acumen Journal: PostScript Tech		 10

Submitting Form Data

import this file into our copy of the same form to see user’s data; we’ll see how to do this later in the article.

•	 A copy of the entire pdf file, with all of the filled-in form fields in place.

	 We can open this file in our own copy of Acrobat and inspect the responses.

We tell a form button to do this by attaching a pre-defined Submit action to its Mouse-Up event.

Our Example File In this article, we’ll work with
the document in Figure 1,
turning its “Sign me up”
button into a Submit button
that will email us the user’s
responses to the other form
fields (two text fields and a
drop-down menu).

Creating the
Submit Action Here’s how we attach the

Submit Form action to the
button’s Mouse Up event:

1.	 In the Tools pane’s Forms panel, click the Edit tool (Figure 2).

	 Acrobat will drop into the Form editor (Figure 3, next page). This looks just like the normally-displayed pdf
page, except:

•	 Each of the page’s form fields is represented by a rectangle containing the field’s name.

•	 The toolbars have changed, the normal Quick Tools toolbar being replaced with a set of forms-

Figure 2. Select the Edit tool in the Forms
panel.

Figure 1. We are going to turn this form’s
Sign me up! button into a functioning
Submit button.

Acumen Journal: PostScript Tech		 11

Submitting Form Data

related tools.

2.	 Double-click on the Sign me up Button field.

	 Acrobat will display the Button Properties
dialog box (Figure 4).

3.	 Go to the Actions tab in the Button Properties
dialog box and choose the following settings
in the pop-up menus (these are shown in
Figure 4):

•	 In the Select Trigger pop-up menu, select
Mouse Up.

•	 In the Select Action menu, select Submit a
Form.

5.	 Click the Add button.

	 Acrobat will display the awkwardly-named Submit Form Selections
dialog box (Figure 5, next page).

6.	 Type your email address, preceded by the suffix “mailto:” into the url text
field, something like

	 mailto:john@acumentraining.com

7.	 Select either the FDF or PDF radio buttons, according to how you want
your data sent to you.

•	 FDF files contain only the user’s response to
the form fields and are very much smaller

Figure 4. The Actions tab in the
Button Properties dialog box

lets us specify what the Button
should do when clicked.

Figure 3. In the Form Editor, each of
a page’s form fields is displayed as a
rectangle containing the field’s name.

Acumen Journal: PostScript Tech		 12

Submitting Form Data

than the original pdf document, usually
a kilobyte or less in size. However, they
require a (very little) bit of work to examine
their contents. We’ll see what that entails
later in the article.

•	 The PDF file selection means just that,
you’ll get the user’s copy of the pdf form,
complete with filled-in form fields.

8.	 Click the OK button, returning you to the
Button Properties dialog box and then the
Close button, returning you to the Form Editor.

9.	 To leave the Form Editor and return to normal
viewing of your pdf document, click the
Close Form Editing button in the Forms pane
(Figure 6).

That’s it. Now you can post this pdf form to your web page or do anything else
you wish. When somebody fills it out and clicks the Submit button, you will
receive an email with an attached pdf or fdf file.

So, What Do I Do
with FDFs? If you chose to have your file sent back to you as a pdf file, there’s no special

handling you need to do when you receive a user’s response; just open the file
up in your copy of Acrobat and look at what they typed into the fields.

Figure 5. In the Submit Form Selections dialog box, pick the fdf or the pdf radio buttons.

Figure 6. Return to the normal view of
your pdf file by selecting Close Form

Editing in the Forms Tasks pane.

Acumen Journal: PostScript Tech		 13

Submitting Form Data

On the other hand, an fdf file is not intended to be a
standalone document. To read the responses encoded
in an fdf file, you need to import it into your copy of the
form. Happily, this is really easy; in fact, it’s a one-step
process:

1.	 In the Forms pane, select More Form Options >
Manage Form Data > Import Data (Figure 7). Then,
select the fdf file in the resulting Picka-a-File dialog box.

That’s it. Acrobat will load up your copy of the form with
the values encoded in the fdf file.

Submit Button
vs. Acrobat.com Acrobat.com is at its best with forms that you’re sending

to a specific group. For example, I often send pdf evaluation forms to students who have attended the beta
version of a new class. It is most useful to distribute this and collect the responses using Acrobat.com

On the other hand, forms that you are distributing to an indeterminate group—perhaps a form that you send
out only when someone asks for it or, in my case, a form residing on a page in an Acumen Journal—then it’s
best to provide that form with a Submit button. Most of the pdf forms I distribute are in this category. For
example, I have a form that I send to people that have asked about a customized PostScript or pdf class; they
can check the topics in which they are interested then click the form’s Submit button to send me the list.

Figure 7. To view the data encoded in an fdf file, open your copy of the pdf
form and then import the fdf file. Acrobat will populate the pdf form fields with

values it finds in the fdf file.

Acumen Journal: PDF Nuggets		 14

PDF Nuggets

PDF Nuggets

PDF Character
Encoding In designing pdf, Adobe applied many lessons learned from their PostScript experience, often greatly

simplifying the way you do common tasks. For example, every time you use a font in either PostScript or
pdf, you need to re-encode the font so its character encoding matches that of the strings within the file. In
PostScript, this entailed a moderately complicated piece of code, like so:

/MacEncoding

[/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef

... many, many character names here ...

/tilde /macron /breve /dotaccent /ring /cedilla] def

/Helvetica findfont dup length dict begin

currentdict copy pop

/Encoding MacEncoding def

/Helvetica-Mac currentdict end definefont pop

PDF lets you specify common character encodings by name:

<<

	 /Type		 /Font

	 /Subtype		 /Type1

	 /BaseFont	 /Times-Roman

	 /Encoding	 /MacRomanEncoding		 % Could also have been “/WinAnsiEncoding”

>>

This makes life very much easier. The PostScript code is generalized, letting you set the character encoding to
anything you wish. PDF is optimized for the common case.

Acumen Journal: PostScript Tech		 15

Class Schedule

Schedule of Classes, July 2011– October 2011

At right are the dates of Acumen
Training’s upcoming classes.
Clicking on a class name will take
you to the description of that class
on the Acumen Training website.

O.C. and On-Site These classes are taught in Orange
County, California and on-site at
corporate sites world-wide.

Please see the Acumen Training
web site for more information,
including an up-to-date schedule.

Class Fee Classes cost $2,000 per student,
with the following exceptions:

•	 Troubleshooting PostScript $1,500
•	 Support Engineers’ PDF $1,000

There is a 10% discount for signing up three or more students.

Note that if you have four or more students that need to take a class, it will almost certainly be cheaper to
arrange an on-site class.

PDF Classes
PDF 1: File Content

and Structure Aug 22–25 Oct 3–7

PDF 2: Advanced File
Content

Support Engineers’ PDF Jul 21–22 Sept 15–16

PostScript Classes

PostScript Foundations Aug 8–12 Sept 26–30

Advanced PostScript Aug 15–18

Variable Data PostScript Jul 25–29

Troubleshooting
PostScript Jul 18–20 Sep 12–14

http://www.acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/Descr_SEPDF.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html

Acumen Journal: PostScript Tech		 16

Contacting John

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: www.acumentraining.com/register.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

On-Site Classes Information regarding classes on corporate sites is available at www.acumentraining.com/Onsite.html.
These courses are taught throughout the world; for additional information on classes outside the United
States, go to www.acumentraining.com/OnsitesWorldWide.html.

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/Register.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/OnsitesWorldWide.html
http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 17

What’s New

What’s New at Acumen Training?

An Update to
the JavaScript

Book is Coming I’m working on an update to the old Extending Acrobat Forms with JavaScript book. I’ll be self-publishing this as
an eBook and it will be available later this year. I’ll post an exact date in the next Journal issue.

In the meantime, if you want to be
notified when the book’s ready, drop
me an email at john@acumentraining.
com; put “Javascript book” somewhere
in the subject.

mailto://john@acumentraining.com
mailto://john@acumentraining.com

	Go Next Page 11:
	Go Next Page Bottom 10:
	Go Next Page:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

	Go Next Page Bottom:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

	Go Home:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

	Go Prev Page:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

	Go Next Page 2:
	Page 3: Off
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

	Go Home 2:
	Page 3: Off
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

	Go Prev Page 2:
	Page 3: Off
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

	Go Next Page 3:
	Page 9: Off

	Go Home 3:
	Page 9: Off

	Go Prev Page 3:
	Page 9: Off

	Go Next Page Bottom 2:
	Page 9: Off

	Go Next Page 4:
	Page 10: Off
	Page 11:
	Page 12:
	Page 13:

	Go Home 4:
	Page 10: Off
	Page 11:
	Page 12:
	Page 13:

	Go Prev Page 4:
	Page 10: Off
	Page 11:
	Page 12:
	Page 13:

	Go Next Page Bottom 3:
	Page 10: Off
	Page 11:
	Page 12:
	Page 13:

	Go Next Page 5:
	Go Home 9:
	Go Prev Page 5:
	Go Next Page Bottom 4:
	Go Next Page 7:
	Go Home 11:
	Go Prev Page 7:
	Go Next Page Bottom 6:
	Go Next Page 8:
	Go Home 12:
	Go Prev Page 8:
	Go Next Page Bottom 7:
	Go Next Page 9:
	Go Home 13:
	Go Prev Page 9:

