
Table of Contents

The Acrobat User “Document Open” Properties
Acrobat gives you quite a bit of control over what a PDF file should look like when it is first
opened. You can hide tool bars and menus, center the document on the screen, and control
the initial window view. Let’s see how to do this.

PostScript Tech Reencoding Fonts, Part 2
Last month, we learned the basics of adding characters to a font’s Encoding array. This
month, we’ll look at a more efficient technique that lets us match a font’s encoding to the
host computer system.

Class Schedule December-January-February-March
Where and when are we teaching our Acrobat and PostScript classes? See here!

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, © 2001 John Deubert, Acumen Training

John Deubert’s Acumen Journal, December 2001

Acumen
Training

“Document Open” Properties
Have you noticed how Acrobat behaves when you open an issue of the Acumen Journal?
Acrobat resizes the document window to match the size of the PDF page, centers the
window on the screen, and hides the toolbars.

The actions you want
Acrobat to carry out when
opening a PDF file are
among the properties that
may be stored as part of a
PDF file. These “Document
Open” properties are of
great importance if your PDF
will be read primarily on
screen.

This month, let’s see how to
use these Document Open
properties.

Next Page ->

The Acrobat User

Acumen Journal: The Acrobat User

Selecting
“Document Open” The Document Open properties reside

among the “Document Properties” sub-
menus. Simply go to File>Document
Properties>Open Options… and Acrobat
will present you with the Open Properties
dialog box (below, right).

Here are listed all of the
Document Open properties.

Let’s look at each of these
controls.

Next Page ->

Acumen Journal: Acrobat User

“Document Open” Properties - Page 2

Initial View These controls allow us to
specify how Acrobat should
display the file when it is
first opened.

Page Only
Bookmarks and Page
Thumbnails and Page These radio buttons allow

you to specify whether the
PDF file’s bookmarks and
thumbnails should be initially
visible.

On-screen documents should always have highly visible navigation controls. The reader
should never be left wondering what to do.

The first page of the Acumen Journal, for example, has a clickable table of contents
that makes it clear to the reader where he or she may go. If your on-screen document
doesn’t do something similar, it is important that you make visible either the bookmarks
or the thumbnails pane when the document opens.

By and large, bookmarks are much more useful than thumbnails for people who are
reading your document for the first time. Thumbnails are really useful only for highly
graphic documents being read by someone at least passingly familiar with the document.

Next Page ->

Acumen Journal: Acrobat User

“Document Open” Properties - Page 3

Page Number The Page Number text box allows you to specify the
page to which the PDF document should open. This
will be the first page of the document, as far as the reader is concerned. Usually, this
will also be the first sequential page within the file, but it doesn’t need to be.

Magnification This control specifies the default magnification for this
document. (That explains the name, anyhow.)

Most of the entries in this menu are simple numeric
magnifications.

Fit in Window, Fit Width, and Fit Visible correspond to the
equivalent controls in the toolbar. Be careful of using these
as default magnifications for a document. The magnification
your reader sees on the screen will be dependent upon how
they have sized their windows; what they see may not be
at all what you had in mind.

Default uses whatever the reader has set in Acrobat for the
default magnification. Again, you will not be directly controlling the magnification, and
so you can’t be certain of what your reader will be seeing.

I recommend 100% for on-screen documents. If you need to set a different default
magnification, it may be a sign that your document needs to be redesigned.

Next Page ->

Acumen Journal: Acrobat User

“Document Open” Properties - Page 4

Page Layout Finally, the Page Layout pop-up specifies how succes-
sive pages within your document should be displayed.

Single Page is the usual Acrobat method for displaying
a PDF file: one page at a time. Clicking on the window’s scroll bar moves you one page.

Continuous displays the pages as though they were on a continuous roll of film.
Clicking the scroll bars move you up or down by a screenful, regardless of how many
pages that might be.

Continuous – Facing is a sort of poor man’s spreads: the pages are displayed continuously,
side-by-side.

For on-screen documents, you will usually want to select Single Page.

Next Page ->

Acumen Journal: Acrobat User

“Document Open” Properties - Page 5

Window Options This series of check boxes
specifies how the document
window should be displayed
to the reader.

Resize Window to Initial Page If selected, Acrobat will
resize the document window
to match the page size. An
excellent choice for an
on-screen document.

Center Window On Screen If selected, the PDF window
will be placed in the center of the reader’s computer screen. Also a good idea for on-
screen documents.

Open in Full Screen Mode If selected, the PDF document will fill the reader’s screen, hiding menus, controls, toolbars,
etc. If you select this, be very sure to place controls on your PDF pages that let the
reader regain use of the rest of his or her computer.

Display Document Title If selected, Acrobat will display the document’s title in the drag bar of the window.
Usually a good idea, though this is more of an esthetic and document design question.

Next Page ->

Acumen Journal: Acrobat User

“Document Open” Properties - Page 6

User Interface Options Finally, this set of check
boxes lets you hide Acrobat’s
controls from the reader.

Be very careful with these.
If you hide Acrobat’s con-
trols, you must provide good
replacement controls within
your PDF pages or you’ll
have a very panicky reader.

Hide Menubar
Hide Toolbar

Hide Window Controls These are the three things you can hide. Menubar and toolbar are pretty obvious.
“Window Controls” refers to the
page counter, scroll bar, etc. that
normally run along the bottom of
each Acrobat window.

Note that the Acumen Journal hides the Toolbar and Window Controls, but leaves the
menubar visible. Even I tend to panic when the menubar disappears.

Next Page ->

Acumen Journal: Acrobat User

“Document Open” Properties - Page 7

Conclusion Paying attention to the Open Option controls is an important part of creating an
on-screen document in Acrobat. It is with these that you control the initial appearance
of your document and the first impression that people have of you through your work.

Setting these appropriately go a long way to giving your PDF file a finished, professional
first impact.

Return to Main Menu

Acumen Journal: Acrobat User

“Document Open” Properties - Page 8

Reencoding Fonts, Part 2
Last month, we saw how to insert character
names into fonts in order to gain access
to the accented characters included in Adobe’s Standard Character Encoding. The
PostScript code we examined inserted four characters into a font, using a method that
was clear, but not very efficient.

In particular, if you need to make extensive changes to a font’s character encoding,
you wouldn’t want to do it a character at a time, as we did last month.

This month, we’ll see how to do wholesale reencoding of a PostScript font.

By the way, you may want to go back and re-read last month’s article. I’m assuming
you remember how to reencode a font and why you would want to do so. If you don’t
have last month’s Journal (and why not?), you can get it from the Acumen Training
website; click here.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

¿Dónde está el camino a San José?

http://www.acumentraining.com/resources.html

Driver Output and
Reencoding When PostScript generated by an application or driver gets a font, it’s not enough to do

a simple findfont. Driver output must reencode every font it uses. In particular, it needs
to change the encoding of each font to match that of the operating system generating
the PostScript (usually the Mac or Windows).

Thus, when driver output gets a font, the PostScript usually looks something like this:

/Helvetica findfont reencodefont 14 scalefont setfont

The reencodefont procedure will be a procedure defined in the PostScript prolog that,
well, reencodes the font.

Next Page ->

Acumen Journal: PostScript Tech

Reencoding Fonts, Part 2 - Page 2

reencodefont Definition Here is our reencodefont procedure. This program has the same output as last month’s.

/MacEncoding [

/.notdef /.notdef /.notdef

...

... Macintosh Encoding names here

...

] def

/reencodefont % /NewName /OldName => <<fdict>>

{

findfont dup

length dict copy

dup /Encoding MacEncoding put

definefont

} bind def

/Helvetica-Mac /Helvetica reencodefont 18 scalefont setfont

72 600 moveto

(¿Dónde está el camino a San José?) show

showpage

Next Page ->

Acumen Journal: PostScript Tech

Reencoding Fonts, Part 2 - Page 3

¿Dónde está el camino a San José?

The Code in Detail

Define the Encoding array /MacEncoding [
...
... Macintosh Encoding names here
...

] def

We create our Encoding array ahead of time. This is simply a PostScript array with
character names in an order appropriate to your operating system. To save you some
typing, I’ve placed both the Mac and Windows Encoding arrays (as well as this month’s
sample program) in a file on the Acumen Training’s Resources page. You’re welcome.

Note that this Encoding array is appropriate only for Western Roman fonts. It will be
completely wrong for Cyrillic or other non-Roman scripts and for fonts such as Symbol
or Zapf Dingbats. We’ll come back to this problem in a little while.

Define reencodefont /reencodefont % /NewName /OldName => <<fdict>>
{

Remember that to reencode a font, we create a new font identical to the original except
for the new Encoding. Our reencodefont procedure therefore takes two arguments: the
name of the original font and a name for the new, reencoded version.

Our reencodefont returns a copy of the reencoded font dictionary.
Next Page ->

Acumen Journal: PostScript Tech

Reencoding Fonts, Part 2 - Page 4

http://www.acumentraining.com/resources.html

findfont dup

Here we fetch the original font dictionary and duplicate the dictionary object on the
operand stack.

length dict copy

We create a new dictionary as large as the original font dictionary and copy the contents
of our original font into the new dictionary. This line leaves a copy of the new dictionary,
now holding the contents of the original font, on the operand stack.

dup /Encoding MacEncoding put

We dup the new dictionary object and put our MacEncoding array into it with the name
Encoding. This replaces the original Encoding array.

definefont
} def

Finally, we convert the new dictionary into a font dictionary. Note that definefont
requires a name as its bottom argument. In our case, it will find the name that was
placed on the stack as an argument to reencodefont.

Next Page ->

Acumen Journal: PostScript Tech

Reencoding Fonts, Part 2 - Page 5

Using the new font /Helvetica-Mac /Helvetica reencodefont 18 scalefont setfont
72 600 moveto
(¿Dónde está el camino a San José?) show

Finally, we use our new procedure to create a Macintosh-encoded version of Helvetica.

Note that last month we printed the same
text, but had to use backslashed octal
character codes to print our accented characters:

(\004D\001nde est\002 el camino a San Jos\003?) show

This month, I can type the characters directly into the string from my Mac’s keyboard,
because I am matching my font’s Encoding array to my system’s character encoding.

Next Page ->

Acumen Journal: PostScript Tech

Reencoding Fonts, Part 2 - Page 6

¿Dónde está el camino a San José?

Some
Refinements

Non-alphabetic Fonts As I mentioned earlier, our Mac- and WinEncoding arrays are appropriate only for Western,
alphanumeric fonts; you would not want to use them with Symbol or dingbat fonts, nor
with Cyrillic or other non-Western fonts.

Thus, before inserting an Encoding array into a font, you should check to see whether
it’s a proper font to receive this encoding. The way I usually do this is to check for the
presence of aacute or some other character in the Adobe Standard Character set. I
only insert the new Encoding array if my test character is present.

The proper way to test for the presence of a character in a font is to look in the font’s
CharStrings dictionary. Our reencodefont procedure now looks like this:

/reencodefont % /NewName /OldName => <<fdict>>

{

findfont dup

length dict copy

dup /CharStrings get /aacute known

{ dup /Encoding MacEncoding put } if

definefont

} bind def

This is the version of reencodefont that is on the Acumen Training resources page.

Next Page ->

Acumen Journal: PostScript Tech

Reencoding Fonts, Part 2 - Page 7

Caching Font
Dictionaries Reencoding a font can be time consuming if carried to excess; you don’t want to do it

more often than necessary. One good way of minimizing the extent to which you execute
your reencodefont routine is to do all your reencodefonts ahead of time, saving the
result in a key-value pair.

/F1 /Helvetica-Mac /Helvetica reencodefont def

/F2 /Helvetica-Bold-Mac /Helvetica-Bold reencodefont def

While you’re about it, you should probably do your scalefonts ahead of time, also:

/F1-12 F1 12 scalefont def

/F1-14 F1 14 scalefont def

/F2-12 F2 12 scalefont def

/F2-14 F2 14 scalefont def

This way, when you need to change fonts, you don’t need to re-find, -encode, and -scale
your fonts:

F1-12 setfont (You gave them) show

F2-12 setfont (how much??) show

By the way… It would be still more efficient to place your scaled, reencoded font dictionaries in a
composite font.

But that’s a tale for another month.
Return to Main Menu

Acumen Journal: PostScript Tech

Reencoding Fonts, Part 2 - Page 8

Schedule of Classes, Dec 2001 - Mar 2002
Following are the dates and locations of Acumen Training’s PostScript and Acrobat classes.
Clicking on a class name below will take you to the description of that class on the
Acumen training website.

The PostScript classes are taught in Orange County, California.

PostScript Classes
PostScript Foundations December 10 – 14 March 18 – 22

Advanced PostScript January 21 – 25

PostScript for Support
Engineers January 14 – 18

Jaws Development April 2 – 5

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration �

Acrobat Classes �

Acumen Journal: Class Schedule

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

On-Site Only These classes are taught only on corporate sites. If you have an interest in any of
these classes for your group, please see the Acumen Training website regarding
arranging an on-site class.

Acrobat Essentials This class teaches the student how to make perfect PDF files. It includes complete
coverage of the meaning and proper settings of all of the Distiller Job Options.

Interactive Acrobat Here we show you how to add bookmarks, links, buttons, sounds, movies, form fields,
and other interactive features to an Acrobat file.

Creating Acrobat Forms This class shows you how to make interactive forms in Adobe Acrobat. It steps you
through creating the form, posting form contents to a server, and everything else you
need to create a working PDF form.

Troubleshooting with
Enfocus’ PitStop This class shows the student how to use all of the capabilities of this popular editing

and preflight software.
Back to PostScript Classes

Return to First Page

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact us any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for two types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Did you like it, hate it, or did it make you want
to eat brussels sprouts? How could we make it better? Do you like the PDF format?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like us to address?

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	btnHome:
	btnPrev:
	btnNext:

