
Table of Contents

The Acrobat User Rollover Help, JavaScript Version
Last month, we saw how to implement roll-over help using the “Show-Hide” field action.
This month, we’ll see another way of doing roll-over help that is more efficient if you
have many form fields on a page that need help.

PostScript Tech Using Images in a PostScript Form, Part 1
This month we start a two-part article discussing how to use images in a PostScript
form. A form’s PaintProc cannot usefully read the input stream, so how do you embed
the image data in the form? We’ll see how this month.

Class Schedule Jan–Feb–Mar
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? Not much just now.
Happy holidays, though.

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 21 © 2002 John Deubert, Acumen Training Revised 12/26/02

John Deubert’s Acumen Journal, December 2002

Acumen
Training

Roll-Over Help, JavaScript Version
Last month, we saw how to implement roll-over help: help text that appears when the
mouse rolls over a control or other visual feature on the page (like this). You may
remember that we used a pair of Show-Hide Field actions to do this:

• A Show Field action, attached to the Mouse Enter event, that makes visible an
initially-hidden help text field.

• A Hide Field action, attached to Mouse Exit, that hides the help text field again.

The problem with doing
things this way is that
we need a separate text
field, with appropriate
help text, for each item
on the page that
requires roll-over help.
This can yield pages that
are very messy and hard
to maintain, as at right.

This month, we’ll
implement roll-over help
using JavaScript, a
method appropriate for
crowded pages.

Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Overview of the
Process Consider the form at right, containing two text fields

and a large blue box at the bottom. Whenever the
cursor moves into either the Name or Address text
fields, a sentence of help text appears in the blue
rectangle, as in the lower illustration at right. (Click
the magnifier button beneath the upper illustration
to see the full, functioning form.)

Using the Show-Hide Field action to mplement this
roll-over help would entail placing two text fields,
one for each text field, atop each other in the blue
box. With two fields this might be acceptable; for a
form with twenty fields, it would drive you crazy.

Here, we are going to take a different approach.

We shall place a single text field in the blue rectangle.
JavaScripts attached to the Name and Address fields’
Mouse Enter events will place appropriate help text
into the single help field. JavaScripts attached to the
text fields’ Mouse Exit event will erase the help text.

The advantage here is that all the form fields that need roll-over help will a single text
field for displaying their help text. This will make our form field far less complicated
than if we needed a separate help field for each form field.

Next Page ->

Acumen Journal: Acrobat User 3

Roll-Over Help Using JavaScript

This form is available on
the Acumen Training
Resources page as
FlattenedFood.pdf.

http://www.acumentraining.com/resources.html

The JavaScripts As you can see at right, our form has three fields:

• txtName and txtAddress are the text fields that
collect information from the user of our form.

• txtHelp is the text field that displays our roll-over help.

I created the visible help box (that is, the blue rectangle)
in the original Illustrator artwork. The txtHelp field is an invisible text field placed over the
blue rectangle; its initial properties are:

• Border Color and Background Color: off

• Read-only: on

• Text Color: white

• Default text (in the Options panel): Empty

These properties together make the text
field completely invisible on the page. Note
that we need our text color to be white so
that the eventual help text will be visible
against the blue background.

Next Page ->

Acumen Journal: Acrobat User 4

Roll-Over Help Using JavaScript

Mouse Enter JavaScript Let’s start by attaching a JavaScript Action to the txtName field’s Mouse Enter event.
This JavaScript will be executed any time the mouse enters the button. I’m going to
refer you to last month’s Journal for a detailed description of how to attach an Acrobat
action to an event. The short version is:

Attaching a JavaScript • With the Form tool selected, double-click on the form field to which you want to
attach the JavaScript

• In Actions panel of the resulting Field Properties dialog box (left, below), select the
Mouse Enter event and click on the Add button.

• In the resulting Add Action dialog box (right, below), select the type of Action you
want to attach to the field (JavaScript, in our case).

Next Page ->

Acumen Journal: Acrobat User 5

Roll-Over Help Using JavaScript

• You will now be looking at the JavaScript
Edit dialog box; type your JavaScript into
the textedit box. (We’ll look at the actual
JavaScript code in a moment.)

• Back out of all the dialog boxes until your
are looking at the Acrobat page.

You will need to carry out these steps to
attach JavaScripts to the Mouse Enter and
Mouse Exit events of each form field for which you want roll-over help.

Next Page ->

Acumen Journal: Acrobat User 6

Roll-Over Help Using JavaScript

The JavaScript The Mouse Enter JavaScript is a simple, two-line script that inserts appropriate text into
our help text field. In our case, that help text will prompt the user to type a name into
the Name field.

var helpFld = this.getField("txtHelp")

helpFld.value = "Type your name into this field."

Let’s look at it in detail.

Step by Step var helpFld = this.getField("txtHelp")

This first line creates a named reference (a “variable”) to our form’s help text field. The
phrase this.getField("txtHelp") says, in English, “In this document, get the form field
whose name is txtHelp.” The equal sign assigns this form field to the named reference
helpFld.

In the remainder of our script, the name”helpFld” will represent our help text form field.

helpFld.value = "Type your name into this field."

The second line of our script sets the value of our form
field to the text “Type your name, etc.” The “value” of
an Acrobat text field is the text that it displays to the
user; setting the value of the field makes the specified
text appear in our help box.

Next Page ->

Acumen Journal: Acrobat User 7

Roll-Over Help Using JavaScript

Mouse Exit JavaScript The JavaScript we must attach to the txtName field’s Mouse Exit event is nearly identical
to the Mouse Enter JavaScript:

var helpText = this.getField("txtHelp")

helpText.value = ""

The only difference between this JavaScript and our
previous one is that the text we are placing into the
help text field is blank, denoted by two adjacent quote
marks. This causes our help text field to become
invisible again when the mouse leaves the txtName
form field.

That’s All That’s all there is to it.

I do pretty much all my roll-over help in this way. Entering the JavaScript is no harder
than using last month’s Show-Hide field method and is much easier to work with in
even very simple forms.

Return to Main Menu

Acumen Journal: Acrobat User 8

Roll-Over Help Using JavaScript

Using Images in Forms, Part 1
This month and next we shall examine techniques
for using images in PostScript forms. We shall look
at three PostScript programs that use an image (the
“Jumping Granddaughter”) in a form, executing the
form twice to produce the output at right.

The three techniques shall discuss are:

• Save Data to Disk - This works very well and has
a minimal impact on VM. It does require that
your PostScript RIP have a hard disk.

• ReusableStreamDecode filter - This is the best
way to do things if you have a PostScript
LanguageLevel 3 printer.

• Filtered Data Acquisition Procedure - This is my
favorite solution to this problem; it works on
Level 2 printers and does not require a hard disk.

We shall be talking images here, but these techniques
are appropriate for any type of data you want to
repeatedly access in a PostScript program (including executable PostScript code, such
as EPS files).

Let’s take a look.
Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

A Review of
Images and Forms We shall start this month’s discussion by looking at

a PostScript program that prints our test image, just
to remind ourselves how we print images in
PostScript. We shall also look at a program that cre-
ates a simple PostScript form, also as a reminder.

These reminders are going to be fairly brief; I am
assuming that you at some point have seen how to
print images and execute forms in PostScript and
just need to see an example or two to become
reacquainted.

If these topics have evaporated completely from your memory, you may want to
review them in the PostScript Language Reference Manual or in your PostScript student
notes. (We talk about forms in the Advanced PostScript class; we discuss images in all
the PostScript classes.)

Next Page ->

Acumen Journal: PostScript Tech 10

Images in Forms, Part 1

The image Operator The PostScript code that prints our image is as follows:

/DeviceRGB setcolorspace % It’s an rgb image

72 360 translate % Specifies the position

278 219 scale % Specifies the size

<<

/ImageType 1

/Width 278 % in pixels

/Height 219 % in scanlines

/BitsPerComponent 8 % 8 bits each, rgb

/ImageMatrix [278 0 0 -219 0 219]

% [w 0 0 -h 0 h]

/DataSource currentfile /ASCIIHexDecode filter % Data in ASCII format

/Decode [0 1 0 1 0 1] % Map data 0…FF into color values 0…1

>> image

2c192d200f1f2213182319181d14171914181b161d121117121212141611

16191211140d0e0e0e13121716131c0d0b161517240d111c12151c13171a

0f0e131414161d181e1611181f17241a1221170c1d160b1b190e1e1c121d

...

Note that the image data follows the invocation of image in our PostScript code. This is
significant to our task, because this is precisely what we cannot do when we move our
image into a form.

Next Page ->

Acumen Journal: PostScript Tech 11

Images in Forms, Part 1

All of this month’s code is
in the file
ImagesForms1.zip on the
Acumen Training
Resouces page.

The code at right is in
the zip file as
BasicImage.ps

http://www.acumentraining.com/resources.html

PostScript Forms As you recall, a PostScript form is a container for a PostScript graphic
that is to be printed repeatedly in a PostScript job. The first time the
form is used, PostScript executes the code that draws the form and,
at the same time, it caches the graphic. Successive uses of the same
form can grab the graphic from the cache, rather than re-executing
the PostScript code. This can be very much faster.

As a reminder of what forms look like, the code on the next page
defines a form consisting of a yellow triangle and then executes the
form twice, producing the results at right.

Next Page ->

Acumen Journal: PostScript Tech 12

Images in Forms, Part 1

/TriangleForm

<< % Begin our form dictionary

/FormType 1 % All forms have FormType 1

/PaintProc { % This proc draws our form

pop % Discard the argument (the form dictionary)

50 100 moveto 100 0 lineto % Draw a yellow triangle

0 0 lineto closepath

gsave

0 0 1 0 setcmykcolor fill

grestore

stroke

} bind

/BBox [-1 -1 101 101] % This bounding box includes the line width

/Matrix [1 0 0 1 0 0] % Scale by 1, translate by 0

>> def

TriangleForm execform % First execution: PaintProc is executed

0 100 translate

TriangleForm execform % Second execution: triangle taken from cache

Although we get two triangles on the page, our form’s PaintProc, which draws the tri-
angle, is executed only once. The triangle is cached in the first execution of the form;
the second execform retrieves the triangle from the form cache.

Next Page ->

Acumen Journal: PostScript Tech 13

Images in Forms, Part 1

This code is in this
month’s zip file as
TriangleForm.ps

Our Challenge What we want to do is combine our two sample programs to create a form that prints
an image. Clearly, our PaintProc is going to contain a call to the image operator. Most
people’s first attempt to do this is to simply put their non-form call to image into the
form’s PaintProc exactly as-is, yielding something that looks like this:

This doesn’t work /ImageForm <<

/FormType 1

/PaintProc {

pop

278 219 scale % Specifies the size on the page

<<

/ImageType 1

/Width 278

/Height 219

/BitsPerComponent 8

/ImageMatrix [278 0 0 -219 0 219]

/DataSource currentfile /ASCIIHexDecode filter

/Decode [0 1 0 1 0 1]

>> image

16191211140d0e0e0e13121716131c0d0b161517240d111c12151c13171a

0f0e131414161d181e1611181f17241a1221170c1d160b1b190e1e1c121d

...

} bind

/BBox [0 0 278 219]

/Matrix [1 0 0 1 0 0]

>> def Next Page ->

Acumen Journal: PostScript Tech 14

Images in Forms, Part 1

The preceding PostScript code places the image data in-line with our procedure definition.
This doesn’t work. Procedure body contents are scanned and converted to PostScript
objects when the procedure is created; our ASCII-encoded image data is converted by
the PostScript scanner into a series of executable names. At execution time, the inter-
preter will try looking these names up and will generate an undefined error:

%%[Error: undefined OffendingCommand: 16191211140d0e0e0e13121716131...]%%

This is not what we had in mind.

We must supply data to our PaintProc’s image operator in some form other than a data
stream in-line with the PaintProc’s PostScript code.

This (finally) is what we shall discuss this month and next.

Our Project We shall look at three PostScript programs that place our
Jumping Granddaughter image in a form and execute that
form twice, producing the double image at right. As we
said earlier, we shall:

Example 1. Save the image to a hard disk

Example 2. Use a ReusableStreamDecode filter

Example 3. Attach a filter to an array of strings

Next Page ->

Acumen Journal: PostScript Tech 15

Images in Forms, Part 1

1. Save Data on
Hard Disk Our first method of using an image within a form starts by saving the image data in a

temporary file on disk; our PaintProc’s call to image will read the data from disk.

The disk on which we are going to save our image data must be directly available to
our RIP. In the case of a stand-alone printer, this must be a disk built into the printer
or attached to it by a USB, SCSI, or other port. Printers that have a separate RIP almost
always have access to the hard disk of the computer on which the RIP is running.

There are two distinct steps to this method of making an image form:

1. Save the image data to disk.

We do this in PostScript pretty much the way we do it in any other language: open
source and destination files and then fire up a loop that reads data from the source
and writes it to the destination. In PostScript, the source will usually be currentfile.
We actually saw how to do this, in a slightly different context, in the January 2002
issue of the Acumen Journal.

2. Create a form whose PaintProc makes a call to image that uses this data from the disk.

Our form’s PaintProc will open the image data file and hand it to the image operator
as our data source.

Next Page ->

Acumen Journal: PostScript Tech 16

Images in Forms, Part 1

The Program /buffer 8192 string def % An 8k input buffer; resize to taste

/WriteToTempFile % datasource (filename) => ---

{ /dest exch (w) file def % Open our destination file

/src exch def % Give the datasource a key name

{ src //buffer readstring % Loop: read a buffer of data

dest 3 -1 roll writestring % write the data to dest
not { exit } if % Exit from the loop at end-of-file

} loop % Repeat until done

dest closefile % Close the destination file

} bind def

currentfile /ASCIIHexDecode filter % Our data source

(tempImage.data) % The name of our temp file

WriteToTempFile % Proc invocation followed by data

2c192d200f1f2213182319181d14171914181b161d121117121212141611

... Lots of image data here...

a1edfba2f0fda6f2ffa9f5ffaef6ffaef7ffaef7ffaef7ffaef7ffaef7ff

> % This is the ASCIIHexDecode end-of-data marker

Next Page ->

Acumen Journal: PostScript Tech 17

Images in Forms, Part 1

This program is in this
month’s zip file as
TwoImagesOnDisk.ps.

The Program, continued /JumpForm <<

/FormType 1 % FormType is always 1

/BBox [0 0 278 219] % The form prints the image at 0,0

/Matrix [1 0 0 1 0 0]

/PaintProc % Here we draw our form

{ pop % We don’t need the dictionary argument

/DeviceRGB setcolorspace % We’re printing an rgb image

278 219 scale % This will be the size of the printd image

<< % Begin our image dictionary

/ImageType 1

/Width 278 % Our image is 278 samples across...

/Height 219 % ...and 219 scanlines hight

/BitsPerComponent 8 % 8 bits each of r, g, and b

/ImageMatrix [278 0 0 -219 0 219] % [w 0 0 -h 0 h]

/DataSource (tempImage.data)(r) file % Our data file

/Decode [0 1 0 1 0 1] % Map data 00…ff into color 0…1

>> image % Call the image operator

Data

} bind

>> def

JumpForm execform % Here the PaintProc gets executed

0 219 translate

JumpForm execform % Here the form is rendered from the cache

Whew! Let’s see what’s happening here.
Next Page ->

Acumen Journal: PostScript Tech 18

Images in Forms, Part 1

Stepping Thru’ the Code

Write image data to disk /buffer 8192 string def

We start by creating a suitably-sized string to use as an input buffer

/WriteToTempFile % datasource (filename) => ---

We define a procedure called WriteToTempFile. This procedure takes as arguments a
file object for the data source and a string containing the name of our destination file.
The procedure creates the destination file with the specified name and then copies the
entire contents of the data source into the destination file.

{ /dest exch (w) file def
/src exch def

We create and open our destination file, giving the newly-created file object the keyname
dest. We also save the data source fileobject with the keyname src.

{ src buffer readstring % => (string of data) bool
dest 3 -1 roll writestring % => bool
not { exit } if

} loop

This loop moves the data into our file. Each time through the loop we do the following:

• Read a bufferful of data from src; the readstring operator returns buffer, now full of
image data, and a boolean that will be false if we’re at end of our source file.

Next Page ->

Acumen Journal: PostScript Tech 19

Images in Forms, Part 1

• Write the contents of buffer to dest.

• Reverse the boolean and exit from the loop if the reversed boolean is true (that is,
if the original boolean was false, indicating end of file).

dest closefile
} bind def

Finally, we finish our procedure definition by closing the destination file.

currentfile /ASCIIHexDecode filter
(tempImage.data) % The name of our temp file
WriteToTempFile

Having defined our WriteToTempFile procedure, we use it to write our image data to
disk. The procedure wants two arguments, remember: a fileobj that is the source of
the data (in our case, currentfile with the ASCIIHexDecode filter attached) and a string
containing the name of the file into which to copy the data.

a1edfba2f0fda6f2ffa9f5ffaef6ffaef7ffaef7ffaef7ffaef7ffaef7ff
>

The call to WriteToTempFile is followed by the image data, in this case ASCII encoded.
Note that our image data ends with a “>,” the end-of-data marker for the ASCIIHexDecode
filter; this will be seen by our loop as logical end-of-file. Our loop’s call to readstring will
return false at when it hits this marker. As a result, WriteToTempFile will not read past
this point and we can follow the > with clear PostScript.

Note that you could run our PostScript code to this point as a separate file, saving the
image data for later, repeated use.

Acumen Journal: PostScript Tech 20

Images in Forms, Part 1

Next Page ->

/JumpForm <<
/FormType 1
/BBox [0 0 278 219]
/Matrix [1 0 0 1 0 0]

Having saved our image data to a temp file, we can begin the construction of our form
dictionary. We set FormType to 1, BBox to values appropriate to our scaled image, and
Matrix to an identity matrix.

/PaintProc % <<formdict>> => ---
{ pop

When execform executes PaintProc, it places on the stack a copy of the form dictionary
as an argument. Since PaintProc makes no use of anything in this dictionary, we can
safely discard it with a pop.

/DeviceRGB setcolorspace
278 219 scale

Now our PaintProc calls the image operator. This looks very similar to the program on
page 11. It begins by setting the colorspace to match that of image data (RGB, in this
case) and scaling to the size we want for the printed image.

Next Page ->

Acumen Journal: PostScript Tech 21

Images in Forms, Part 1

<< /ImageType 1
/Width 278 % Our image is 278 samples across...
/Height 219 % ...and 219 scanlines hight
/BitsPerComponent 8 % 8 bits each of r, g, and b
/ImageMatrix [278 0 0 -219 0 219] % [w 0 0 -h 0 h]
/DataSource (tempImage.data)(r) file % Our data file
/Decode [0 1 0 1 0 1] % Map data 00…ff into color 0…1

Most of the image dictionary contents are identical to our earlier, stand-alone image.
The exception is the DataSource, which is now our data file.

Note that here I am opening the data file each time I want to print the image. An
alternative would have been to open the data file at the time we create our form
dictionary and then have our PaintProc rewind the file to the start. I’m not going to
describe that technique here; look at TwoImagesRewind.ps in this month’s zip file.

>> dup image

PaintProc finishes creating the image dictionary, does a dup (saving a copy for later),
and calls the image operator.

/DataSource get closefile

As a final step, our PaintProc closes the temp file associated with the DataSource key in
our image dictionary. (This is why we did a dup on our image dictionary before calling
image.

Next Page ->

Acumen Journal: PostScript Tech 22

Images in Forms, Part 1

} bind
>> def

That is the end of our PaintProc and the end of our form dictionary. We do a def,
associating the form dictionary with the name JumpForm. (You may have noticed we
placed the name “/JumpForm” on the stack at the start of our dictionary construction.)

JumpForm execform
0 219 translate
JumpForm execform

Now, let’s use our new form, shall we? We execute the form twice. The first time,
execform must execute our PaintProc, opening the temp file, executing image, and
caching the painted image.

In the second execution of JumpForm, execform can draw the painted image from the
form cache; PaintProc will not need to be executed. (This presumes there was enough
RAM available to the RIP to successfully cache the form, of course.)

Next Page ->

Acumen Journal: PostScript Tech 23

Images in Forms, Part 1

Final Comments This technique works quite well and is not particularly hard, conceptually. Two final
comments are in order:

Deleting the Temp File One bit of cleanup we did not do here was delete our temp file when we were finished.
(I didn’t do this because I thought, if you run this program, you’d like to see the temp
file on your disk.) In a real situation, you should add the following line to the very end
of the PostScript code:

(tempImage.data) deletefile

Not surprisingly, the deletefile operator takes the name of a file on the RIP’s hard disk
and deletes it.

Tidiness is important.

Limitations This technique depends on the RIP’s having access to a hard disk. This will be true of
most PostScript devices whose RIPs reside on a computer separate from the printing
engine. Desktop printers (or other all-in-one PostScript printers) must have a hard disk
built in or attached to a USB, SCSI, or other port.

If you try this code on Distiller, by the way, the temp file will appear in the Distiller
directory on your computer’s hard disk, unless you supply a full pathname for the temp
file.

Next Page ->

Acumen Journal: PostScript Tech 24

Images in Forms, Part 1

Next Month? That’s enough for the moment.

Next month, we shall look at the other two ways of incorporating images into a form:

• ReusableStreamDecode - The best way to do things if you have a Level 3 RIP.

• Filtered Data Acquisition Procedure - My favorite solution to this problem, overall.
Requires only a Level 2 printer and doesn’t require a hard disk.

See you next month.

Return to Main Menu

Acumen Journal: PostScript Tech 25

Images in Forms, Part 1

Acumen Journal 26

Page Title

Schedule of Classes, Jan – Mar 2003
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes
PostScript Foundations January 27 – 31 March 24 – 28

Advanced PostScript March 3 – 7

PostScript for Support
Engineers February 10 – 14

Jaws Development On-site only; see the Acumen Training website for more information.

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration �

Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes �

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website
regarding setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Troubleshooting with
Enfocus’ PitStop

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1⁄2-day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Nothing New This
Month. A quiet month. Winter approaching. This is noticeable in Southern California mostly because

of the light: low-angled, golden, picking out every detail in the trees and hills. Quite pretty
in a subtle way.

Creating Acrobat Forms
John Deubert, Adobe Press

“So that’s how it works. I’d
never been sure until I read
this book.”

— A. Einstein

Return to First Page

Acumen Journal: What’s New

What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it inspire you try to
conduct your own appendectomy?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or
PostScript? Feel free to email me about. I’ll answer your question if I can. If enough
people ask the same question, I can turn it into a Journal article.

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Flattened Food, Inc.
From America’s Highways to Your Table

“Carrion, Jeeves”

Application for Employment

Name

Address

Acumen Journal

Form Sample With Roll-Over Help

Acumen Journal

Field Properties Dialog Box

Acumen Journal

Add an Action Dialog Box

Acumen Journal

Page Title

Flattened Food, Inc.
From America’s Highways to Your Table

“Carrion, Jeeves”

Application for Employment

Name

Address

	txtRollOver: This roll-over help is attached to an invisible button perched over the word “this.”
	btnRollOver:
	btnUnzoom:
	txtHelp:
	txtAddress:
	txtName:
	btnHome:
	btnPrev:
	btnNext:

