John Deubert’'s Acumen Journal, February 2003

Table of Contents Acumen

The Acrobat User

PostScript Tech

Class Schedule

What's New?

Contacting Acumen

Training

Batch Processing in Acrobat
Acrobat has a quite useful, often overlooked batch processing ability that lets you apply a
set of actions to the one or more PDF files. This month, we’ll see how to use it.

Using Images in a PostScript Form, Part 3 of 3
We finish our three-part series on incorporating images into a PostScript form. Our
final installment describes a technique that will work on any Level 2 printer.

Feb-Mar-Apr
Where and when are we teaching our Acrobat and PostScript classes? See here!

London classes resuming
John is returning to London with the PostScript Foundations class in June.

Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 23 © 2003 John Deubert, Acumen Training

The Acrobat User
Acrobat Batch Processing

Many people are unaware that
Acrobat has quite a useful batch
processing mechanism that lets you
perform automated actions upon
one or more PDF files. Simply select
a sequence from the File>Batch
submenu and Acrobat will carry out
the actions that make up that
sequence.

Depending upon the sequence, the
actions may be applied to the
current document, a folder full of
PDF files, or a file selected when
you execute the sequence.

This month, we shall see how to
create and use our own batch
sequences.

Acumen Journal: Acrobat User

MNEwW,.. SCHEN
Open.. #®0
Open Web Page.. L W0
Open as Adobe PDF...

Close Y
Save xS
Save As.. {185
Revert

Impart]
Export b
Send hMail

Document Properties F
Document Security.. “CKES

Batch Pracessing

Edit Batch Sequencas..,

Journal Open 5ettings .
Print 15t Page of All
Print All

Remove File Attachments
Save All as RTF

Set Security to Mo Changes

Next Page ->

Acrobat Batch Processing - & &

Creating a

Seq uence If you select File>Batch Processing> Batch Processing b| Edit Batch Sequences...
Edit Batch Sequences..., Acrobat Freaata Thumhnailc
will present you with a dialog box that _
. O T AR Eﬂﬂﬂhﬂ#':ii s e e
lets you rename, delete, and otherwise
manage the currently-defined |__MewSequence.. | (&% Create Thumbnails
sequences. Of interest to us here is the || [Editsequence~ | %Fﬂ:“"‘::”'“'
(][]
New Sequence... button. | Rename Sequence... | |4 Print 15t Page of ANl
| & Print All

[[_Delete Sequence £k Remove File Attachments

{E% save All as RTF
s Set Security to No Change

| Aun Sequence |

When you click on this button, Acrobat asks you for e SEiuEate

a name for then new sequence. You can type in any
short, descriptive name for your sequence. Choose a name for this sequence:

. . [lmrnnl Open Settings
Click the OK button and Acrobat presents you with the

Batch Edit Sequence dialog box (next page) that we

use to specify the characteristics of our new sequence.

Next Page ->

Acumen Journal: Acrobat User 3

Acrobat Batch Processing - & &

Setting Up the Sequence The Batch Edit Sequence dialog Batch Edit Saquénce = Journal Open Settings
box lets you specify the three
properties that characterize a
batch sequence:

I.5elect sequence of commands: | Select Commands... |

|k ﬁ Set Open ﬂpﬁ-:-n:

1. The commands that make up
the sequence.

2 Bun commands an: [Hlu Opiemin Acrobak l' {woose._.,

Click the Select Commands...
button to specify what should
actually happen when this
sequence executes.

3. Select output bocation: | Same Folder as Original{s) % hoosE..

Output Options..
2. To what files the sequence o

should apply. & [_Cancer ||| ok |

You can select from among four choices in a pop-up Selected Files
menu, as at right. If you select Selected Files or Selected Selected Folder

i i : AskWhen Sequence is Run
Folde:’r, you will need to_cllck the Choose button to specify - BT o o
the files or folder to which the sequence should apply.

3. The output location, that is, the location into which a PDF Specific Folder
T H = AskWhen Sequence is Run
file should be saved after being modified by our sequence. - PG o e e
Dont Save Changes

The Output Options button lets you specify the name of
the file to which the modified document should be saved. I'll let you explore this on
your own.

Next Page ->

Acumen Journal: Acrobat User 4

Acrobat Batch Processing

Specifying the

Sequence C(licking the Select Commands button in the Batch Edit Sequence dialog box presents
you with the Edit Sequence dialog box. This lets you specify the actions that will make

up your sequence.

Efe Sequence

[Cemtetral :l
I Delebe All Comments]
I St gt e e COmments
bl T T
I At essibiliny hecber
I DeoCmsse st S mmary
I Emalierd | Themsalo aillc
I Exirail aages A% LG
I ExIFacl aages At FhG
I3 Exiradi bssages &s TIFF
3 Prisa
I Resseye Embedded Thessbe
I Security
I3 St Dprm Oplieas "
= [Javakewigd

[t & 5et Dpem Dpbisas

T

i B maonve

bz U

bl Dz

|

For a complete discussion
of the Acrobat Document
Open options, see the
December 2001 Acumen
Journal.

You choose these actions from a predefined list on the
left side of the dialog box. To add one of these actions
to your sequence, select that action in the list and click
on the Add button. You may add as many of these actions
to your sequence as you wish.

For the purpose of discussion, I'll assume that we are
adding Set Open Options to our sequence, as in the

= [Comments ;‘
£ Delete Al Comments 2
£ Summarize Comments
= [J Document
£} Accessibility thecker
{5 Document Summary
& Embed All Thumbnails
{# Extract Images As IPEG
£} Extract Images As PNG
£} Extract Images As TIFF
£} Print
& Remove Embedded Thumbng
{& Security
{&# Set Open Options
= [lawascript
£ Execute JavaScript
= [Page
{# Crop Pages
{# Delete Pages
{& Insert Pages
& Mumber Pages
£} Rotate Pages
= [T MDOF Consultant
£} Audit Space Usage
{# Detect and Remove
& Dptimize Space

|
-

illustration above. This action sets the Document Open properties of a PDF file (the initial

window size, magnification, etc.)

Acumen Journal: Acrobat User

Next Page ->

http://www.acumentraining.com/AcumenJournal.html

Acrobat Batch Processing

Action Settings

Changing the Settings

When you click on the disclosure

button (the little “twisty triangle”
on the Mac) for an action in your
sequence, Acrobat displays the
settings associated with that
action, as at right. For example,
in the case of a Set Open Options
action, Acrobat will show you the
Document Open options set by
the action.

b | :]h’-li!gll

Edet Sequence

v =3 - D=L et Opem Optisas
3 Delebe All Comments] P 1
I Samstsbgair e Comimencs isistd Ficating- 100

= [Do e [EI P iyt gl P
I3 Acceasibilivy Checker Pl Pl Pl (kg
I [cmibd 80§ LT APY T Bied 34 W i iivst T8 | R Tinl Pad: Ved]
15 Emtlerd Al Theansabaaals Catin g W P s T Pt Yk
3 Exiract syt A% BFEG R Ot I8 Fidl S rth e i
I Exiract Meaigpes A Prad — Taabiiy Dot st Tt b Yok
1 Exiract bsasges A TIFF T L]
15 Prisa Haige Tl e i
I Restavs Emibedoed Theasbe e it ' | bl CHMA - T
1 SeLurity —

I3 St Dperim Oplieas *

fe=cn{e=s)

To change the settings associated with an action in your sequence, double-click that

&,

action in the right-hand list. Acrobat will present you with a dialog box that lets you
specify the details of that action. This dialog box will be different for each type of action.

At right is the dialog box for the Set
Open Options action. This presents
all the Document Open properties
available in Acrobat. In this dialog
box, you specify how this action
should set these properties.

Note you can set a property to
Leave As Is, indicating it should not

2 Themivin s, anll Fasger
I LBEYE AS 1§

St Opem Sptiznn
Rl View Opem Acison
 Fage Daky O Leave Ax
3 Bcstmart sad foge N —

Mgt catles:

Page Liyeut: | Smgls Fuge

WiNSyw' pDeng

LG & B TaE Dpllsas

be modified by the sequence. &

Rz g Windew To Biiisl Fage:

e B Tl Sope e Rigd g1 ||'-l- L | B e e Castidin | Yes 8
i i v il G R il I'l'H- L I LS DR R T AT I-llml"'ll'l-l- L I
T a——)
e)

Hde Feaear:

Next Page ->

Acumen Journal: Acrobat User

Acrobat Batch Processing - & &

"Interactive” Switch There is a little icon to the left of each item in your sequence’s list of B |= &k Set
actions. Clicking this icon toggles “interactive mode” for that action.

If interactive mode is turned on, Document Open Options
the action will carry out the activity Initial View
you specified and then present you & Page Only Pagetumber: [I_ | of1
with the regular Acrobat dialog box QBockmarks sndPage o neatian: [Detadl E|
that performs that same action. (In | ©@Tumimaisandfage 0 —)
the case of the Set Open Options
action, this would be the standard RO Sl D
Document Open Options dialog box, [Resize window To Initial Page O ¥sde Menubar

. b Center Window Gn Soreen [Hide Toolbar
at rlght') [Open in Full S¢reen Mode b Hide Window Controls

i Display o £ Titl
Interactive mode lets you make [Display Document Title

changes to the settings each time |cesncel) [0w 2]
you run the sequence. (In our
Open Options, perhaps we always want to open to page one, but we want to set the
default magnification on a case-by-case basis.)

Done! Once you have specified all of the actions that belong in your sequence, and the settings for
each action, you can exit out of all the dialog boxes. Your sequence is now ready to use.

Next Page ->

Acumen Journal: Acrobat User 7

Acrobat Batch Processing - & &

Batch Processing Edit Batch Sequences..,

Journal Open 5ettings
Print 15t Page of All
Print All

Remove File Attachments
Save All as HTF

Set Security to No Changes

Using Your Sequence Once you have created a sequence,
it will appear in the Acrobat Batch
Processing submenu. To execute
your new sequence, simply select
it in the submenu.

By default, before executing a
sequence, Acrobat will ask if Run Sequence Confirmation = lournal Open Settings
you're sure you want to do so;
you can turn off this confirma-
tion request in Acrobat’s
preferences.

Input: Currently opened files

Commands;
| i Set Open Options

I have found Acrobat’s batch
sequences to be quite useful
and remarkably easy to use.
They're not nearly as fully
featured as, say, the Action
List mechanism in Enfocus’
PitStop, but are certainly
something I find myself using

frequently. -

Return to Main Menu

Output: Files will remain opened and unsaved

Acumen Journal: Acrobat User 8

PostScript Tech
Using Images in Forms, Part 3

For the past two months, we have looked at ways to
incorporate scanned images into a PostScript form.

The difficulty associated with this task is supplying _
image data to our form’s PaintProc procedure; there '_'-'_
This article assumes you is no way of predicting when this procedure will be =

have read the previous called by the form mechanism.
two articles. If you

TERES oM S8 1D S So far, we have examined two methods for providing
You can get them from

e A Gainsl vl data to PaintProc, each with its virtues and problems:
page.

e Save the image data to disk.

This works very well, but requires the PostScript ==&
interpreter have a disk available to it; this is very -' '
frequently not the case.

e Save the image data into memory using the
ReusableStreamDecode filter.

This, too, works very well, but will work only on ="
PostScript 3 devices, since ReusableStreamDecode =
did not exist in Level 1 or 2. i

This month, we shall conclude the series with a look at a third method that lacks the
disadvantages of the other two methods: storing the data in an array of strings.

Next Page ->

Acumen Journal: PostScript Tech

http://www.acumentraining.com/AcumenJournal.html

Images in Forms, Part 3

An Overview

We discuss data acquisi-
tion procedures in the
PostScript Foundations
and Support Engineers
classes. Go back and
check your notes for a
review.

What we’re going to do is put our image data into an array of strings:

/imagedata [
(...first dollop of data...)
(...second dollop of data...)

(...n"" dollop of data...)
] def

Our call to the image operator will then use a data acquisition procedure (DAP, for
short) for its data source. Remember data acquisition procedures? When used as a
source of image data, it is called by the image operator whenever it heeds more data;
the procedure is expected to return a string containing image data.

In our case, every time image calls our DAP, the procedure will simply fetch the next
data string from our array and leave it on the stack as its return value:

{ imagedata 1 get
/i 1 1 add store
}

Note that we shall need to keep an externally-defined variable as our index into the array.

The nice thing about this approach is that it will work on any LanguagelLevel 2 or 3
printer; no hard disk is needed.

Next Page ->

Acumen Journal: PostScript Tech 10

Images in Forms, Part 3 - & &

Constructing the
Data Array Before we dive into the PostScript code, let's address ourselves to a preliminary issue:

how do we create this array of image data strings? I don’t much want to do what is on
the previous page: have a series of parentheses, each containing many kilobytes of
image data:

/imagedata [
(...first dollop of data...)

(...n"" dollop of data...)
] def

Among other things, an occasional byte of image data will happen to be the ASCII code
for a parenthesis or a backslash; since these have meaning to the PostScript scanner
when it’s constructing a string, they will poison the creation of that string. We could
preprocess the data, preceding “special” characters with a backslash, but I'd very
seriously rather not.

It would be nice if we could come up with a more convenient way of constructing the data
array, preferably something that would let us just dump image data into the input stream.

I wouldn’t bring this up if we couldn’t do it, of course.

As we shall see, our PostScript code will start by defining a procedure, CreateDataArray,
that reads data from a file (currentfile, in our case) and places it into an array of strings.

Next Page ->

Acumen Journal: PostScript Tech 11

Images in Forms, Part 3 - & &

The POStSCI‘ipt This sample program mirrors the previous months’ examples. It places an image (“The
Jumping Granddaughter”) into a form and then uses the form to print the image twice,
as on the first page of this article.

o\°

Create the String Array /CreateDataArray
{

srcfileobj => [(Array) (of) (Strings)...]
/temp exch def % Save the file object
[% Begin our array (puts a mark on the stack)
{ % Begin our "loop" loop

temp 16384 string readstring Read data into a new string

not { exit } if Exit if we are out of data

o® o° oo

; ; } loop Otherwise, go back & do it again
This sample program is
in the file ImageForm3.zip] % Create the array
on the Acumen Training } bind def
Resources page.

Q

% Create an array of strings, reading data from currentfile
/ImageData

currentfile /ASCIIHexDecode filter CreateDataArray
2c192d200£f1£2213182319181d14171914181b161d121117121212141611
16191211140d0e0e0e13121716131c0d0b161517240d111c12151cl13171a

0£f0e131414161d181el611181£17241a1221170c1d160blbl9%0elelcl21d

>
def

Next Page ->

Acumen Journal: PostScript Tech 12

http://www.acumentraining.com/resources.html

Images in Forms, Part 3 - & &

Define the Form /JumpForm <<
/FormType 1
/BBox [0 0 278 219]
/Matrix [1 0 0 1 0 0O]

This is the same form as in the
previous two Journal articles.

o® o©° o©

The changes are commented below.

/PaintProc
{ pop
userdict /i 0 put % Initialize our index

/DeviceRGB setcolorspace
278 219 scale
<< /ImageType 1
/Width 278
/Height 219
/BitsPerComponent 8
/ImageMatrix [278 0 0 -219 0 219]
/DataSource { Here’s our Data Acg. Proc.
ImageData 1 get

/1 1 1 add store

Get next string in the array...

o® o° o©

...and increment 1 in userdict

} bind
/Decode [01 0 1 0 1]
>> image
} bind
>> def

Use the Form JumpForm execform
0 219 translate
JumpForm execform

Next Page ->

Acumen Journal: PostScript Tech 13

Images in Forms, Part 3

Stepping Thru’ the Code

Defining the Procedure

Our program starts by defining a procedure that creates an array of strings from data
read from a fileobj, currentfile, in our case.

/CreateDataArray % srcfileobj => [(Array) (of) (Strings)...]
{

The CreateDataArray procedure takes a fileobject as its argument. It reads to the end
of that file, storing the data it receives into an array of 16k strings, returning that
array on the stack.

You will invariably want to attach a filter to your source fileobject so that you can tell
the procedure where the end of the data is. Otherwise, the procedure will happily read
the entire rest of your PostScript program into the array, including whatever executable
PostScript code follows the call to CreateDataArray. We'll come back to this topic in a
moment.

¢

/temp exch def $ Save the file object

Our procedure starts by saving the fileobject into a variable, temp. I admit to an aesthetic
bias against saving procedure arguments into variables; it seems so un-PostScript. It
sometimes happens, however, that it is much clunkier to juggle repeatedly-used stack
elements than to just put the arguments into variables; such is the case here.

Next Page ->

Acumen Journal: PostScript Tech 14

Images in Forms, Part 3 - & &

[% Begin our array (puts a mark on the stack)

Here we begin our array. Remember (from your PostScript classes) that the open
bracket merely puts a mark object on the stack. The array will actually be created
later, by the close bracket operator.

o\°

{

Begin our "loop" loop
temp 16384 string readstring % Read data into a new string

We now start an indefinite /loop loop that reads incoming data one 16k buffer at a time,
leaving each string of data on the stack. This loop exit upon end-of-file.

The first line in our loop reads data from our source file into a newly-made, 16-kilobyte
string. The readstring operator leaves this string, now full of data, on the operand
stack; it also returns a Boolean object that will be false if we are at end-of-file.

The choice of string size is dictated by two facts:

e A large string size will require fewer strings to hold the data. Remember that our loop
exits with all of the data strings on the operand stack; reading a 1 megabyte image
into 16k strings would leave 67 strings on the stack. If the strings are too small and
the data is too large, you could provoke a stackoverflow error.

e Small strings will minimize wasted VM in the final call to readstring. That final call will
probably return a partially filled string. The string’s length attribute will be set to the
amount of data actually read, but the memory allocated for the string will still be
16k (or whatever). The smaller your strings, the less the possible memory waste.

I chose a 16k string size as a balance between these two requirements.
Next Page ->

Acumen Journal: PostScript Tech 15

Images in Forms, Part 3

Creating the String Array

not { exit } if % Exit if we are out of data
} loop

The Boolean returned by readstring will be false at end-of-file. We reverse this Boolean
with the not operator and then exit from our loop if the reversed Boolean is true.

This completes our loop, which will repeatedly execute until it reaches the end of the
source file. At this point, the loop exits with all of the data strings piled up on the stack.

1
} def

Our procedure ends by finishing the array construction with a close bracket. This collects
everything off the stack down through the mark, creates an array containing the former
stack contents, and leaves that array on the stack. This array is the return value of our
procedure.

/ImageData

We next want to use our newly-defined procedure to create a named array of strings
from our image data. We start by pushing the name ImageData onto the operand
stack. This will eventually be the name of our array; for the moment, it’s just a name
object sitting on the stack.

Next Page ->

Acumen Journal: PostScript Tech 16

Images in Forms, Part 3

currentfile /ASCIIHexDecode filter CreateDataArray
2c192d200£1£2213182319181d14171914181b161d121117121212141611
16191211140d0e0e0e13121716131¢c0d0b161517240d111c12151cl13171a

aledfba2f0fdacf2ffa9fbffacfoffacf/ffacf/ffacfTffacf7ffaectf7£fEf
>

Here is where we actually make the data array. Our data source is currentfile to which
we are attaching the ASCIIHexDecode filter. This will convert our incoming ASCII data
into the original binary, which gets stored into the strings. (We don’t want to store the
data in ASCII form because that would double the amount of VM it occupies.)

The ASCIIHexDecode filter also lets us identify the end of the data; the “>" symbol at
the end of the image data is the filter's end-of-data marker; this will be seen by
ASCIIHexDecode as logical end-of-file. This is where CreateDataArray will stop reading
data and where the PostScript interpreter will resume executing our PostScript code.

def

When CreateDataArray ceases execution, there will be two items left on the stack: the
array of strings created by the procedure and, beneath that, the name ImageData,
which we placed on the stack before executing CreateDataArray. Our call to def places
the name and the array into the current dictionary as a key-value pair.

Next Page ->

Acumen Journal: PostScript Tech 17

Images in Forms, Part 3 - & &

Defining the Form JumpForm <<
/FormType 1

>> def

Our form definition is almost exactly identical to those in the previous Journal articles.
If you haven’t done so, go back and reread the December 2002 article, which describes
the workings of this form in detail. Here, I'm going to look only at the few lines that
have changed in the form’s PaintProc procedure.

/PaintProc {
pop
userdict /i 0 put % Initialize our index

Our PaintProc procedure, after throwing away its copy of the form dictionary (read
December 2002!) defines a variable, i, having a value of 0. This will be our index into
the string array.

We are breaking a philosophical principal, here, by the way. PostScript forms should be
self-contained; PaintProc should make references only to items defined in systemdict or in
the form dictionary, itself. We are defining i into userdict, which is bad form (so to speak).

Unfortunately, we cannot define j into the form dictionary, itself, since that dictionary is
read-only; PaintProc wouldn’t be able to create the variable, let alone increment it, if J
were defined into the form dictionary. That being the case, we shall simply define i/ into
userdict and hope no one sneers at us too openly.

Next Page ->

Acumen Journal: PostScript Tech 18

Images in Forms, Part 3 - & &

<< /ImageType 1

/DataSource {
ImageData i get
/i i 1 add store
} bind

>> image
PaintProc calls the image operator, of course; as we ==

said earlier, we shall use a data acquisition procedure
for that operator’s data source.

Our DAP gets the ith string out of the ImageData
array and then increments j, in preparation for the
next time the procedure is executed.

Use the Form JumpForm execform
0 219 translate
JumpForm execform

Finally, we execute our form twice, producing the
results above.

Pretty cool, eh?

Next Page ->

Acumen Journal: PostScript Tech 19

Images in Forms, Part 3 - & &

So, Why is

This Cool? Wwhat's best about this way of getting an image into a form is that it will work on a very
wide range of printers; in fact, this will work on any Level 2 or Level 3 printer that has
enough VM to hold the data. The printer doesn’t need a hard disk; it doesn’t need to
be LanguagelLevel 3. There are no particular disadvantages. The other techniques do
have their places, however:

e Saving the image data on a hard disk has the benefit that it uses little VM. The image
data never resides entirely in memory, so image size is not limited by VM. Also, you
could download the image data to the printer’s hard disk ahead of time and have
the data available to all future PostScript files on that printer. (We discussed some-
thing similar to this in the January 2002 Journal.)

(While you're about it, you could save the entire form definition as a PostScript
Resource on disk, but that’s another article. Maybe. It's a long story. Take the
Advanced PostScript class.)

e Using ReusableStreamDecode is, to my eye, a clean, satisfying, elegant solution to
the problem. If I were writing PostScript for a known Level 3 printer with adequate
VM, I would use ReusableStreamDecode every time.

Use our array-of-strings technique any time you’re writing for unknown printers. It has
the fewest restrictions.

We could make our technique cooler still by attaching a filter to the Data Acquisition
Procedure, but, darn it, wouldn’t you know, we’re out of space.

Later, perhaps? Return to Main Menu

Acumen Journal: PostScript Tech 20

PostScript Class Schedule a &
Schedule of Classes, Feb — Apr 2003

PostScript Classes

PostScript Foundations

Advanced PostScript

PostScript for Support
Engineers

Jaws Development

PostScript Course Fees

On-Site Classes

Acumen Journal

Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

March 24 - 28 June 23-27 (London)
March 3 - 7
February 10 - 14 April 14-18

On-site only; see the Acumen Training website for more information.

PostScript classes cost $2,000 per student.

These classes may also be taught on your organization’s site. Registration Info —>
Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes —

21

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule a &
Acrobat Class Schedule

Acrobat Essentials

Interactive Acrobat

Creating Acrobat Forms

Troubleshooting with
Enfocus’ PitStop

Acrobat Class Fees

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.

Clicking on a course name below will take you to the class description on the Acumen
Training web site.

No Acrobat classes scheduled for this quarter. See the Acumen Training website
regarding setting up an on-site class.

Acrobat Essentials and Creating Acrobat Forms (1/,-day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there

is @ 10% discount if three or more people from the same organization sign up for the

same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting Acumen Training

Contacting John Deubert at Acumen Training

For more information

Registering for Classes

Back issues

For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: reqgistration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/Acumenlournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What's New at Acumen Training?

London PS
Classes Are Back I've resumed teaching more-or-less-quarterly PostScript classes in London to accom-
modate students in Europe and the U.K. The first of these is a PostScript Foundations
class scheduled for June 23-27. The exact location is yet to be determined, but it will
be someplace a convenient Underground ride from Heathrow Airport.

Return to First Page

Acumen Journal: What's New

Journal Feedback

If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Does it somehow make
you yearn for distant islands that don’t even have a word for “computer?”

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or PostScript?
Feel free to email me about. I'll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Defining a Batch Edit Sequence

Batch Edit Sequence - Journal Open Settings

1.5elect sequence of commands: [5elect Commands... I

|| b % Set Open Options

2. Run commands on: | Files Open in Acrobat > I [Choose...

3. 5elect output location: [Sﬂme Folder as Original(s) | =] [Choose...

[Output Options...]

| Cancel I

=Y

Acumen Journal

Adding Actions to a Sequence - [

Edit Sequence

- [Comments
Delete All Comments
Summarize Comments
= [Document
Accessibility Checker
Document Summary
Embed All Thumbnails
Extract Images As JPEG
Extract Images As PNG
Extract Images As TIFF
Print
Remove Embedded Thumbn
Security
Set Open Options h
= [Javascript

J[p %5 Set Open Options

| Adds» |

[<< Remove]

[Move Lip]

[Move Down]

| Edit.. |

| Cancel I

=Y

Acumen Journal

Examining Action Details - [

Edit Sequence

- [[3J Comments B |= i Set Open Options
Delete All Comments Page: 1
sSsummarize Comments Magnification: 100%

- [Document I Page Lavaut: Single Page
Accessibility Checker Page Mode: Page Only
Document Summary [<« Remove] Resize Window To Initial Page: Yes
Embed All Thumbnails Center Window on Screen: Yes
Extract Images As IPEG] Open In Full Screen Mode: Mo
Extract Images As PNG Display Document Title: Yes
Extract Images As TIFF [Move Down | Hide Menubar: Mo

| Add»»

[Move Lip

Print Hide Toolbar: No
Remove Embedded Thumbn [Edit] Hide window Controls: Yes
Security

set Open Options h
- [Javascript

| Cancel I

=Y

Acumen Journal

Set Open Options - [

Set Open Options

_ Initial YView __ Open Action
i@ Page Only []Leave As Is
_) Bookmarks and Page Page Number: |1
i Thumbnails and Page)]
Magnification: |[100% -
i) Leave As Is
Page Layout: | Single Page = I
__Window Options __User Interface Options
Resize Window To Initial Page: ["r'es = Hide Toolbar: [cleave Asls> =
Open In Full 5creen Mode: [Mo — Hide Window Controls: ["r’es =
Center Window On S5creen: ["r’es - Hide Menubar: [cleave As Is» | &
Display Document Title: [\"Es —]

| Cancel I

=Y

Acumen Journal

	btnHome:
	btnPrev:
	btnNext:

