
Table of Contents

The Acrobat User Embedding Arbitrary Data in PDF Files
One very little-used feature of Acrobat is the ability to embed spreadsheets, text files,
Word document, or any data in a PDF file. The data is easily embedded and just as
easily recovered later.

PostScript Tech Isolating Errors With SubFileDecode
Continuing last month’s discussion, we use the SubFileDecode filter to limit the effect
of PostScript errors. A PostScript error need not kill the remainder of the print job.

Class Schedule July–August–Sept
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? A Reminder: John Does Contract Work
With nothing else too new to report, we’ll do some self promotion.

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 18 © 2002 John Deubert, Acumen Training

John Deubert’s Acumen Journal, July 2002

Acumen
Training

Embedding Arbitrary Data in Acrobat Files
Relatively few people know that you can embed in a PDF file data taken from any file
on your hard disk. The PDF file format includes a mechanism by which arbitrary data—
a spreadsheet, a text file, a Word document, a Quark file—can be placed into a PDF file.

There are endless possibilities associated with this ability. An Acrobat expense report
form could contain the scanned receipts; a music group’s brochure, distributed in PDF
file format, could contain a series of mp3 snippets; at an extreme, a PDF document
sent out for printing could contain the original QuarkXpress document, fonts, and
illustration files from which the document was created.

What makes this PDF characteristic useful is that Acrobat 5 makes it very easy to embed
a file in your PDF document and, later, retrieve that file. (Sorry, you can’t get to this
feature from Acrobat 4.)

Let’s see how it all works.

Next page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Embedding Data
in a PDF File Embedding data in your PDF

document is easy, though access to
the feature is located in a somewhat
unintuitive place among the Acrobat
menus.

With your Acrobat file open, select
File>Document Properties>
Embedded Data Objects. Acrobat
will present you with a dialog box
that allows you to embed and
retrieve data within your PDF file.

Next page ->

Acumen Journal: Acrobat User 3

Embedding Data

Embedding the Data The Embedded Data Objects
dialog box lets you manage the
embedding and retrieval of
data in your PDF file.

This is every bit as straight-
forward as it seems. When you
click on the Import button,
Acrobat presents you with a
standard Pick-A-File dialog box,
allowing you to choose the file
whose contents you want to
embed in the PDF document.

Next page ->

Acumen Journal: Acrobat User 4

Embedding Data

Once you have picked a data
file, Acrobat asks you to
name the embedded data.
This is the name that will
appear in the Embedded
Data Object dialog box.

Note that the name of the
data is distinct from the name
of the original file. Both names
are retained by Acrobat. If you
click on a data object in the
dialog box, Acrobat will present
you with information about the
original file.

Next page ->

Acumen Journal: Acrobat User 5

Embedding Data

Retrieving the Data You retrieve embedded data by
selecting the data object in the
Embedded Data Objects dialog
box and then clicking on the
Export button.

Acrobat will give you a chance
to specify where the file should
be placed on your disk and
then retrieve the original file.

Try it out! I have embedded a very small
TIF file in this issue of the
Journal. Go to File>Document
Properties>Embedded Data
Objects and retrieve it.

Next page ->

Acumen Journal: Acrobat User 6

Embedding Data

Embedding Data
in Forms One obvious application of this

feature in Acrobat is to attach
supporting documents to a form.

For example, at right is a member-
ship application form that wants to
have attached a photo of the appli-
cant. How can we embed the photo
in the form without having to teach
the user to access and use the
“Embedded Data Objects” dialog
box?

The answer is: with a JavaScript.

The “Attach Photo” button will have
a JavaScript action attached to its
Mouse Up event. This JavaScript
will make a call to the
importDataObject method.

The following discussion presumes you know how to make Acrobat forms and have
already made the Application form above. (You can download the form, ready made,
from www.acumentraining.com/resources.html.)

Next page ->

Acumen Journal: Acrobat User 7

Embedding Data

American Acrimony Association
That’s alright; We Hate Everyone!

Application for Membership

Name:

Address:

City/State/Zip:

Email:

Please attach a color photograph of yourself in
TIF or JPEG format. Click the
button at right to attach the
photo. Try to look presentable.

This form is available as
a sample file on the
Acumen Training training
website’s Resources page.
Look for Acrimony.pdf.

This discussion assumes
that you know how to
use the Acrobat form
tool to make form fields.

http://www.acumentraining.com/resources.html
http://www.acumentraining.com/resources.html

Attaching the JavaScript To attach the JavaScript to the “Attach
Photo” button:

1. With the Forms Tool selected,
double-click on the “Attach Photo”
button, gaining access to the button’s
properties.

2. In the Actions panel, click on the Mouse
Up event and the Add button, which takes
you to the Add an Action dialog box.

3. Select JavaScript as the Action Type and
click on the Edit dialog box.

At this point, you will be looking at the
simple text editor Acrobat provides for typing
JavaScripts (next page).

Next page ->

Acumen Journal: Acrobat User 8

Embedding Data

If you don’t know how to
make buttons and other
form fields in Acrobat, you
probably should buy and
read several copies of
Creating Adobe Acrobat
Forms.

4. Type in the following line of JavaScript:

this.importDataObject(“Photo”);

The text in quotes is the name the
data object will have in the PDF file,
that is, the name the Embedded Data
Objects dialog box will display for this
data.

5. Repeatedly click OK buttons until you
return to the form’s page.

That’s all there is to it. Click on the hand
tool and then click on the Attach Photo
button. Acrobat will ask you to pick a
file. When you do so, the contents of that file
will be embedded in the form. You can confirm
this by opening up the Embedded Data Objects
dialog box; an item named Photo will now
appear in the list.

Next page ->

Acumen Journal: Acrobat User 9

Embedding Data

Submitting the Form A form that contains embeded
data must be submitted as
FDF (Form Data Format),
rather than HTML. The FDF will
contain the embedded data,
properly tagged and identified.

You could, of course, submit
the entire PDF file, instead.

Next page ->

Acumen Journal: Acrobat User 10

Embedding Data

Caveats A couple of things of which to be aware:

No Type Checking Acrobat provides no way for checking the nature of the data you embed in an Acrobat
file. Our membership application form asks the user to select a TIFF or JPEG file.
However, there is no way to ensure that the file the user picks is, in fact, an image file;
you cannot prevent the user from mistakenly attaching a Word document.

File Size Also remember that data embedded in a PDF file will contribute significantly to the size
of that PDF file. Don’t embed your entire home movie collection into a PDF file and then
try to email it to a friend.

Otherwise, there are surprisingly few drawbacks to this technique.

Let me know… I am curious to know the uses people find or have found for this feature. If you apply
data embedding to some interesting problem in form development or PDF file distribution,
I’d be very interested in hearing about it. Just drop me a line at
john@acumentraining.com.

Return to Main Menu

Acumen Journal: Acrobat User 11

Embedding Data

mailto:john@acumentraining.com

Isolating PostScript Errors With SubFileDecode
Last month, we examined the SubFileDecode filter, using it to conditionally ignore
unwanted PostScript code without expending time and memory on the unused code.

Let us continue our discussion of SubFileDecode with what I think is its most valuable
use: isolating the effects of PostScript errors.

Note that I’m going to assume last month’s article is still fresh in your mind; you may
want to re-read it.

What Problem
Are We Solving? PostScript errors, left to themselves, kill the remaining print job. This is a serious problem

for people who do very large print runs. Variable data printing, for example, often entails
PostScript print jobs consisting of tens of thousands of concatenated documents,
amounting to hundreds of thousands of pages. A PostScript error early in the
PostScript stream kills all of the remaining stream; an error in page 27 prevents the
printing of pages 28 through 498,060.

By using SubFileDecode to make each document in the stream into a separate subfile,
we can arrange things so that a PostScript error prevents the printing of only the page
or document in which the error occurs; the succeeding pages all print correctly.

Let’s see how to do it.

Next page ->

Acumen Journal: PostScript Tech

PostScript Tech

If this month’s topic
sounds familiar, perhaps
it’s because we discuss
it in the Advanced
PostScript class.

stopped: a Review First, we need to remind ourselves of the workings of the PostScript stopped operator.
(We discuss this operator in the PostScript Foundations and PostScript for Support
Engineers classes, so you probably remember this. Don’t you?)

The PostScript stopped operator takes an executable object—an executable file, procedure
body, etc.—from the operand stack and executes it, that is, transfers it to the Execution
stack, returning a boolean on the operand stack when the item is finished.

execObj stopped => bool

If the interpreter reaches the end of the executable object successfully, without
encountering a PostScript error, then stopped returns false.

On the other hand, if the interpreter encounters a PostScript error while executing the
object, execution of the stopped object immediately ceases and stopped returns true.

Thus, stopped returns a boolean that will be true if the executable object has any
PostScript errors. For example, the following line of PostScript:

{ y x div } stopped { (Division failed!!) = } if

will attempt to divide y by x and print the text “Division failed!!” to the output stream
if x is zero or anything else goes wrong with the division.

Next page ->

Acumen Journal: PostScript Tech 13

Isolating PostScript Errors

stopped and Error
Trapping You can use stopped to intercept the default PostScript error handling mechanism, if

you wish. Consider the following PostScript code:

/ExecuteJob

{ currentfile cvx stopped { (Omigod! An Error!) = } if } bind def

ExecuteJob

72 600 200 100 rectfill

... put more PS code here ...

The ExecuteJob procedure, when executed, gets currentfile, makes it executable, and
then hands the resulting executable file object to stopped. The entire rest of the
PostScript stream is being executed in our stopped context.

If there are no PostScript errors in the code following the invocation of ExecJob,
stopped will return false when we reach the end of the PostScript stream. If there is a
PostScript error in the PostScript stream, the interpreter will immediately remove from
the Execution stack ExecuteJob’s pointer to currentfile and stopped will return true; we
then print an error message (“Omigod! An Error!”) to stdout.

Next page ->

Acumen Journal: PostScript Tech 14

Isolating PostScript Errors

SubFileDecode
and Errors Returning to our main topic, in order to prevent PostScript errors from poisoning the

entire print job, we shall attach the SubFileDecode filter to currentfile and then execute
the combination with stopped:

% Attach SubFileDecode filter to currentfile; name it “psSrc”

/psSrc currentfile 0 (*END*) /SubFileDecode filter def

psSrc cvx stopped % Execute currentfile through the filter

72 600 moveto

(Page 1) show % Error! No current font.

showpage

END % End of subfile;

/psSrc currentfile 0 (*END*) /SubFileDecode filter def % Do it again

psSrc cvx stopped % for page 2

/Helvetica 20 selectfont

72 600 moveto

(Page 2) show

showpage

END

There is a PostScript error in page 1 of this two-page PostScript document; nonetheless,
page 2 will still print. We have made each page a separate subfile; the error in Page 1
prevents the printing of that subfile, but not the following ones.

Next page ->

Acumen Journal: PostScript Tech 15

Isolating PostScript Errors

All of the examples in
this article are available
on the Acumen Training
Resources page. Look for
SubFileDecode.zip.

The example at right is
stored within the zip file
as SubFileDecode 0.ps.

Step by Step Let’s look at this in more detail.

/psSrc currentfile 0 (*END*) /SubFileDecode filter def

In this first line, we attach the SubFileDecode filter to currentfile. The text “*END*” will
mark the end of the subfile and we shall skip zero instances of this text. (That is, the
first instance of “*END*” in the stream will mark the end of the subfile.)

We give the filtered file object the name “psSrc.”

psSrc cvx stopped

Convert psSrc (currentfile + SubFileDecode) to executable and execute it with stopped.

72 600 moveto
(Page 1) show
showpage

This PostScript code is executed through the SubFileDecode filter. When the interpreter
encounters the invalidfont error provoked by the show, psSrc will be popped off the
Execution Stack and stopped will return a true on the operand stack.

Execution will then procede with whatever is left in currentfile. In our case, this will be
the second page’s Postscript code.

END

This marks the end of the first page’s subfile.
Next page ->

Acumen Journal: PostScript Tech 16

Isolating PostScript Errors

Error Reporting In our previous example, the error is handled silently: no error message is reported,
the page on which the error occurs is simply not printed. It would be much more useful
to implement some sort of error reporting.

To do so, we must make use of the Boolean value that stopped leaves on the stack,
something that we ignored in our previous example.

/_ProgressDict_ << % Holds “state” info (currently just page #)

/PageNumber 0

>> def

/HandleError % This reports error info; currently just page #

{ (Error in page)print

ProgressDict /PageNumber get =

} def

ProgressDict /PageNumber 1 put

/strm currentfile 0 (*END*) /SubFileDecode filter def

strm cvx stopped

72 600 moveto (Page 1) show showpage

END % stopped leaves a Boolean on the op stack

{ HandleError } if % report error if the bool is true

% ... more pages of PS ...

Next page ->

Acumen Journal: PostScript Tech 17

Isolating PostScript Errors

This program is named
SubFileDecode 1.ps.

Step-by-Step /_ProgressDict_ <<
/PageNumber 0

>> def

Here we define a dictionary that keeps track of state information for error reporting. In
our example, we are keeping track of only the current page number; in a real situation,
you might want to also store such things as document title (if the PostScript stream
prints multiple documents), client name, or whatever else would identify the specific
location within a long print stream.

We could simply do a def, putting this information into userdict, but in the long run
here are benefits to putting it into a dictionary specific to the purpose.

/HandleError
{ (Error in page)print

ProgressDict /PageNumber get =
} def

Our error handling procedure prints the information kept in _ProgressDict_. It does not
(yet) print the error name or other information about the error.

ProgressDict /PageNumber 1 put

We set up the state information in _ProgressDict_ to reflect the upcoming subfile.
Here, we simply set the value of PageNumber; in real life, this would probably be quite
an extensive collection of information to be set.

Next page ->

Acumen Journal: PostScript Tech 18

Isolating PostScript Errors

/strm currentfile 0 (*END*) /SubFileDecode filter def
strm cvx stopped

72 600 moveto (Page 1) show showpage

We create and execute our subfile, as before.

END

This is the end of our subfile. At this point in our execution, the stopped that executed
the subfile will place a boolean on the stack. A true will indicate that a PostScript error
has taken place.

Warning: I’m glossing over a very important under-the-hood detail here. We’ll discuss
it in a moment.

{ HandleError } if

Finally, we execute HandleError if the boolean returned by stopped is true.

So, Where Are We? At this point, we have constructed a template for a PostScript stream consisting of a
series of logical subfiles. A PostScript error in one subfile will not prevent the printing
of the subfiles that follow. Our sample code can be readily generalized and applied to a
very wide variety of situations.

The is only one tiny problem: the error handling as we have implemented it in our
example won’t work in the general case. The problem is subtle, but fixable.

Next page ->

Acumen Journal: PostScript Tech 19

Isolating PostScript Errors

Error Handling,
Second Pass Consider the execution of the subfile in our previous example:

/strm currentfile 0 (*END*) /SubFileDecode filter def
strm cvx stopped

...PostScript Code...

END
{ HandleError } if

stopped, Under the Hood When there is an error in the subfile’s PostScript code, how does stopped know to skip
to the end of the subfile before putting its boolean on the stack? The answer is: it
doesn’t.

The SubFileDecode filter—any filter, for that matter—maintains its own input buffer;
when it needs data, it reads it from currentfile, streaming the PostScript code into its
buffer until either the buffer is full or it hits end of file. In our case, because our subfile
has so little PostScript in it, our entire subfile fits in the SubFileDecode buffer; the filter
reads to the end-of-subfile on the first try.

When a PostScript error is encountered, stopped ceases executing our currentfile-plus-
SubFileDecode combination. Whatever PostScript remains in SubFileDecode’s input
buffer is discarded and the interpreter resumes executing currentfile directly, beginning
at whatever code followed the last bufferful read by SubFileDecode.

Next page ->

Acumen Journal: PostScript Tech 20

Isolating PostScript Errors

Since, in our example, the subfile fits entirely within the filter’s buffer, SubFileDecode
reads and buffers everything up through the end-of-subfile, *END*, when stopped
returns, the interpreter picks up execution with our conditional execution of HandleError.

{ HandleError } if

The Problem What if we have a large amount of PostScript code in our subfile, so that the entire
subfile does not fit in SubFileDecode’s input buffer? If a PostScript error occurs early in
the subfile, the interpreter will resume directly executing currentfile at whatever point
in the PostScript stream happens to follow the current SubFileDecode buffer; this will
be a functionally random place in the subfile’s PostScript code and will almost certainly
generate an error of some flavor.

So, What Do We Do? To avoid this problem, we need to “manually” advance currentfile to the end of the
subfile before we let the interpreter resume executing currentfile. To do this, we need
to rearrange our Postscript code a bit.

Next page ->

Acumen Journal: PostScript Tech 21

Isolating PostScript Errors

The New Code… /_ProgressDict_ <<

/PageNumber 1

>> def

/BeginSubFile % pageNum => ---

{ % Save the current page number into _ProgressDict_

ProgressDict /PageNumber 3 -1 roll put

% Attach SubFileDecode to currentfile; name it strm
/strm currentfile 0 (*END*) /SubFileDecode filter def

% Execute the filtered stream and handle the return value

strm cvx stopped { strm flushfile HandleError } if

} bind def

/HandleError % --- => ---

{ (Error in page)print _ProgressDict_ /PageNumber get =

errordict /handleerror get exec % Execute the default error hdlr

} bind def

1 BeginSubFile

...PS Code...

END

2 BeginSubFile

...PS Code...

END

Next page ->

Acumen Journal: PostScript Tech 22

Isolating PostScript Errors

This program is named
SubFileDecode 2.ps.

Step By Step /BeginSubFile % pageNum => ---
{ _ProgressDict_ /PageNumber 3 -1 roll put

/strm currentfile 0 (*EOF*) /SubFileDecode filter def
strm cvx stopped { strm flushfile HandleError } if

} bind def

The BeginSubFile procedure provides our problem’s solution. This procedure creates and
executes our subfile and, most importantly, handles the boolean returned by stopped.

When stopped returns, the interpreter resumes execution of the BeginSubFile procedure.
If the subfile contains a PostScript error, stopped returns true and our if procedure will
flush the remaining subfile and then execute HandleError.

Note that, as a convenience, BeginSubFile takes the current page number as an argument
and places it into _ProgressDict_.

/HandleError % --- => ---
{ (Error in page)print _ProgressDict_ /PageNumber get =

errordict /handleerror get exec
} bind def

Our HandleError procedure, as before, prints the page number on which the error
occurred. We’ve added something new, however: HandleError now goes to errordict and
executes the default PostScript error reporting procedure, handleerror. This allows us
to see the standard PostScript error message, including the error name and offending
command.

Next page ->

Acumen Journal: PostScript Tech 23

Isolating PostScript Errors

1 BeginSubFile
...
... PS Code
...
END

2 BeginSubFile
...
... PS Code
...
END

Our template now consists of an invocation of BeginSubFile at the beginning of each
subfile and *END* at the end of each subfile.

Caveats
(none, really) This technique for isolating the effect of PostScript errors is without any disadvantages

that I’ve encoutered or heard of. It is, on the other hand, vastly important for people
who have very long print runs or for people who routinely concatenat PostScript files
from a variety of sources and then send them to a PostScript printer.

Return to Main Menu

Acumen Journal: PostScript Tech 24

Isolating PostScript Errors

Acumen Journal 25

Page Title

Schedule of Classes, July – Sept, 2002
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes
PostScript Foundations July 29 – Aug 2

Advanced PostScript August 12 – 16

PostScript for Support
Engineers Sept 30 – Oct 4

Jaws Development

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration �

Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes �

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials Sept 5 (1⁄2-day, morning)

Interactive Acrobat

Creating Acrobat Forms Sept 5 (1⁄2-day, afternoon)

Troubleshooting with
Enfocus’ PitStop

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1⁄2-day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

John Does
Contracting Don’t let’s forget that John also does contract work in PostScript and Acrobat. If you have

a need for PostScript programming or Acrobat form development, drop me an email or
give me a call.

It’s hard to find anyone with more experience and knowledge in the field.

Creating Acrobat
Forms Have you bought your copy yet?

And why ever not?

Return to First Page

Acumen Journal: What’s New

What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you regret
having ever learned to read?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or
PostScript? Feel free to email me about. I’ll answer your question if I can. If enough
people ask the same question, I can turn it into a Journal article.

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	txtName:
	txtAddr:
	txtCityStateZip:
	txtEmail:
	btnAttachPic:
	btnReset:
	btnSubmit:
	btnHome:
	btnPrev:
	btnNext:

