
Table of Contents

The Acrobat User Compression in Acrobat
Many designers believe that compression must inevitably reduce the quality of their PDF
artwork. Not so! This month we examine how compression works and how to ensure it
has no effect on visual quality.

PostScript Tech Composite Fonts
Originally introduced as support for Kanji, composite fonts are incredibly useful for printing
Roman text.

Class Schedule May–June–July
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? Acrobat classes now taught quarterly
Acumen Training accepts credit cards
Acumen Training’s Acrobat classes are now taught quarterly in Southern California.

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 16 © 2002 John Deubert, Acumen Training

John Deubert’s Acumen Journal, May 2002

Acumen
Training

Compression in Acrobat
In my most recent Acrobat class at Seybold, one student told me, as a preamble to a
question, that her graphic artist insists that they can’t use any compression in their
PDF files because their work is of too high quality to permit it.

This is a common statement among people who work with PDF and displays a miscon-
ception of how compression works. Some forms of compression do, indeed, reduce the
quality of your images, but others have literally no effect whatsoever on image quality.

In an effort to clear up some of the common misconceptions, let’s talk this month about
how compression actually works. Next month, we shall see how this applies to Acrobat.

What is Compression? Compression is one of those magical things. (Maybe that’s overstated; I used to be very
interested in compression algorithms. As a hobby. This kept my social life simple.) Stated
most broadly, compression is a general term method for some method of reducing the
size of a set of data while still keeping the data usable.

StuffIt on the Macintosh and PKZIP on Windows are software
products that compress the contents of a file. The compressed
file is still usable; if you uncompress the file, you can then
open the document or run the application, just as before.

What compression does, under the hood, is replace the original data with a description
of that data. The goal is to make that description smaller than the original data.

Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Lossless vs Lossy
Compression Compression methods fall into two broad classes:

• Lossless compression is a general term for any means of compression that does
not discard data.

• Lossy compression is the term applied to a compression method that does discard
data.

Let’s discuss these at more length.

Next Page ->

Acumen Journal: Acrobat User 3

Combining PostScript Files

Lossless Compression Lossless compression has no net effect on your data. The compressed file, when
uncompressed again, will be the same, byte for byte, as the original.

To see how this works, consider the data that makes up a scanned image. In most
images, there will be many scan lines that contain contiguous bytes that all have the
same value; for example, 150 bytes in a row that all have the value 0.

If we wished, we could replace the 150-byte run of identical bytes with two bytes: one
that specifies how many bytes are in the run and a second that supplies the byte value.
We will have gone from 150 bytes of original data to two bytes of compressed data.

As another example, examine the
illustration at right. We start with a
scan line consisting of three runs of
identical values: zeros, 64’s, and 91’s.

Upon compression, this 21 bytes of
data becomes 6 bytes, as illustrated.
Each pair of bytes in the compressed
data is the length and value of a run of repeating bytes in the original image.

Uncompression, of course, entails running through the compressed data and creating a
new file that reconstructs the set of bytes in the original data, generating 11 zeros,
seven 64’s, and three 91’s.

This kind of compression is called Run Length compression; Distiller can apply this to
monochrome bitmap images.

Next Page ->

Acumen Journal: Acrobat User 4

Compression in Acrobat

0 0 0 0 0 0 0 0 0 0 0 64646464646464919191

0 0 0 0 0 0 0 0 0 0 0 64646464646464919191

11 0 7

Compression

Uncompression

64 3 91

There are a couple of useful facts to note from our Run Length compression example.

Lossless Compression The first point is that, because this is a lossless compression algorithm, the uncompressed
data exactly matches the original data. There is absolutely no loss of image quality due
to the compression process.

This will always be true of lossless compression methods. ZIP and Run Length are loss-
less compression methods that are supported in PDF. You may apply ZIP compression
to any type of image; you may apply Run Length to monochrome images. They are
both absolutely harmless with regard to image content.

Variable Compression The second point is that the amount of compression you get from a particular algorithm
is dependent upon the nature of the data. In our example from the previous page, our
original 21 bytes compressed to 6 bytes, a compression ratio of 6⁄21 or about 30%.

But if we apply Run Length compression to the set of bytes at
right, our compression ratio is 8⁄7 or 114%. Our “compressed”
data is bigger than the original. This is not good. (As a rule of
thumb, you want to avoid compressions over 100%.)

Every compression method has sets of data on which it works well and others on which
it does poorly.

Next Page ->

Acumen Journal: Acrobat User 5

Compression in Acrobat

0 0 0 13649191

03 1 13

Compression

1 64 2 91

Lossy Compression Lossy compression, such as JPEG, works at least in part by discarding data. This tends
to work best with complex data, such as color images.

The compression software analyzes the data and discards data that it thinks it can easily
reproduce from calculation later. At uncompression time, the values of the missing bytes
must be calculated from the data that was retained.

Consider the set of data at right. Our
lossy compression software may
decide that it needs to retain three of
the twenty-one bytes diagrammed
here. These are the only bytes that
survive into the compressed file; the
rest are discarded.

When the data is uncompressed, the uncompression software must interpolate values
for the missing bytes from the data that was kept. If you compare the uncompressed
bytes with the originals, you would find that, although they are close in value and
retain the same general trend, the exact values are different from the originals.

The net result is that the compression method changes the image data. By how much
depends on the image being compressed and, in the case of JPEG, how much “quality”
you have asked be retained.

Next Page ->

Acumen Journal: Acrobat User 6

Compression in Acrobat

939085858587818081747676766865646362575655

939190888685838180787674727068666461595755

9376

Compression

Uncompression

55

Compression in Distiller The reason all of this is relevant to Acrobat, of course, is that everything in a PDF file
can (and should) be compressed. Lossless compression can be applied to text and line
art; images can be compressed using either lossless or lossy methods.

The controls that specify the details will vary among the different sources of PDF
(Distiller, Illustrator, PDF Creator, etc.), but they are mostly dictating the same set of
options. We’ll look how those options appear in Distiller.

Distiller Job Options You get to the compression controls in Distiller by selecting Job
Options from the Settings menu. This yields the five-tab Job
Options dialog box (next page); the second tab is the one we
want: Compression.

Next Page ->

Acumen Journal: Acrobat User 7

Compression in Acrobat

Compression Job
Options in Distiller Distiller’s Job Options dialog box

provides a Compression panel
containing four sets of
compression controls:

• A single checkbox that turns
on compression for text and
line art.

• Three sets of controls for color,
grayscale, and monochrome
images.

Text and Line Art The Compress Text and Line Art
checkbox applies lossless
compression to the text and line
art in your PDF file. Since this
compression is lossless, it cannot
hurt you.

Turn this checkbox on. There is no good reason not to compress text and line art.

Next Page ->

Acumen Journal: Acrobat User 8

Compression in Acrobat

Color and Grayscale
Images The controls for color and

grayscale image compression
are identical. There are three
controls associated with this
compression:

Compression This checkbox turns on the
compression of color/grayscale
images. Turn it on. You always
want to compress your images;
the question is: what kind of
compression?

Automatic/JPEG/ZIP This pop-up menu lets you
specify the kind of compression
you want applied to your
images. (We’ll talk about the
choices in a moment.)

Quality This pop-up menu lets you specify how much data should be retained if you are
using lossy compression.

Next Page ->

Acumen Journal: Acrobat User 9

Compression in Acrobat

Compression Types The types of compression that you may
apply to color and grayscale images are:

• ZIP - This is the most conservative
selection. Since zip compression is lossless,
this selection will not change your image. At
the very least, you should select ZIP compression. (In this case, you should also
select 8-bit in the Quality pop-up menu; the alternative is 4-bit, which is lossy.

• JPEG - This applies lossy JPEG compression to your images. On the plus side, this is
a much more effective compression method than zip and will make your images
smaller. The problem, of course, is that your images will visibly change due to the
compression.

Most people are far more paranoid about lossy compression than they need to be.
Those of you who have taken my Acrobat Essentials class have already been treated
to my “JPEG is not Evil” lecture. Alas, there’s not room for that here (perhaps in a
future Journal article?), but I do suggest you experiment with JPEG compression.
Particularly if you are eventually printing on a four-color press, the color change
introduced by JPEG is often much smaller than that due to the printing device.

• Automatic – This attempts to be intelligent about what compression is applied to an
image. If the image has a lot of abrupt changes in color (which are affected horribly
by JPEG), Distiller will use ZIP compression; lossless and harmless. Otherwise, it will
use JPEG.

Next Page ->

Acumen Journal: Acrobat User 10

Compression in Acrobat

JPEG Quality Settings You can choose how lossy your JPEG compression
is going to be. The Quality pop-up menu lets you
select among a range of “qualities,” from Maximum
to Minimum. The higher the quality, the more of
the original data will be retained by the when the
image is compressed.

There’s not space here to go into details, but the short version is:

• Maximum is acceptable for reasonably high-quality color work. (Pretty much any
four-color press will change the final printed image more than does the compression.)

• Medium works well for more forgiving color work and for quick-print jobs.

• Minimum is essential for PDF files viewed on the Web.

We may discuss these in more detail in a future Journal article. (Or you could always
take the Acrobat Essentials class.)

Monochrome Image
Compression All of the compression methods available for

monochrome images are lossless. CCITT
Group 4 is theoretically the most effective of
these, but they all do a very good job of
compressing monochrome images. Pick
whichever you appeals to you the most.

Next Page ->

Acumen Journal: Acrobat User 11

Compression in Acrobat

Downsampling There is another set of controls
on the Compression panel that
control the downsampling of
your images to a target
resolution.

Properly speaking, this isn’t
really compression, though it is
aimed at reducing the size of
images.

Unfortunately, we’re out of
space and time this month.

Later, perhaps?

Return to Main Menu

Acumen Journal: Acrobat User 12

Compression in Acrobat

Composite Fonts
Last month’s article on outline fonts ended with a brief example that combined normal
and outline characters into a single composite font, letting you switch between the two
styles by placing, in effect, control codes into your show string. The PostScript line

(We often use \377\001outline\377\000 text.) show

printed as:

This month, let’s look at how composite fonts in some detail. We shall se how they are
constructed and how we can use them to combine several different fonts into one
package and thereby imporve PostScript driver output.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

We often use outline text.

Composite Fonts:
Origin and Use A composite font is a font that

contains other fonts, rather than
characters. The composite font
contains “Base Fonts,” which are
just regular PostScript fonts con-
taining characters. (Actually, these
descendent fonts can, themselves, be composite fonts, but our discussion will ignore
this case.)

Composite fonts were Adobe’s first pass at supporting Kanji and other scripts with
extended character sets, but they never really caught on as such. Although their char-
acter capacity was quite large, implementing any of the standard Asian character
encodings (JIS, Shift-JIS, etc.) often involved some convoluted programming. At this
point, support for multibyte fonts has passed completely from composite fonts to the
newer CID font mechanism.

Nonetheless, the composite fonts continue to have a very good application, unintended
by its designers, I believe, in the printing of Roman typography. By building a composite
font that contains all of your documents fonts, you can switch among those fonts from
within the show string. This is both faster and more convenient than executing a setfont
and show every time you want to change from Times-Roman to Times-Bold.

Let’s start by examining the structure of a composite font.

Next Page ->

Acumen Journal: PostScript Tech 14

Composite Fonts

Composite
Font

Base
Font

Base
Font

Base
Font

Base
Font

Base
Font

Composite Font
Dictionaries Like any other PostScript font, a composite

font is defined by a dictionary whose key-
value pairs supply everything needed for
the font. The key-value pairs that we must
supply when making a composite font are
listed at right.

Let’s look at each of these in turn.

FontType This is an integer that tells the PostScript font mechanism how to interpret the contents
of this dictionary. A FontType of 0 indicates a composite font.

FontMatrix This has exactly the same interpretation as in a regular font: it is a transformation
matrix that maps the character definitions’ coordinate system into User Space.

Composite fonts don’t have characters, of course; they have descendent fonts that
contain the characters. The final size of the printed characters is determined by the
concatenation of the font matrices of the base font and the composite font that contains it.

This being so, the default FontMatrix in a composite font is usually an identity matrix:

/FontMatrix [1 0 0 1 0 0]

Next Page ->

Acumen Journal: PostScript Tech 15

Composite Fonts

Composite Font Key-Value Pairs

Key Value Type

FontType 0
FontMatrix [a b c d e f]
FDepVector [array of fdicts]
Encoding [array of ints]
FMapType integer

This discussion assumes
that you at least vaguely
remember the font dis-
cussion in the PostScript
Foundations or Support
Engineers class.

FDepVector This is an array of the font dictionaries that make up the immediate descendent fonts
within the composite font. A composite font that contained all of the fonts in the
Times-Roman font family would have an FDepVector that looks like this:

/FDepVector [

/Times-Roman findfont

/Times-Bold findfont

/Times-Italic findfont

/Times-BoldItalic findfont

]

Note the findfont calls; this is an array of font dictionaries, not font names.

The fonts within the FDepVector do not need to be of the original 1-point size. If one of
the descendent fonts has characters significantly smaller than the others, you can scale
it to better match the others:

/FDepVector [

/Helvetica findfont

/Symbol findfont 1.2 scalefont

]

Next Page ->

Acumen Journal: PostScript Tech 16

Composite Fonts

Encoding This is an array of integers; each integer is an index into FDepVector. The Encoding array
defines the mapping of font codes in the show string into font dictionaries in FDepVector.

If the current font is a composite font, each byte within a show string will be either a
character code (identifying a character to print) or a font code (identifying the descen-
dent font within which that character resides).

Whithin the show string, a font code is taken as an index into the Encoding array; the
resulting number is then taken as an index into FDepVector, identifying the descendent
font that should be taken as the source of character shapes.

Thus, if our font’s FDepVector and Encoding are defined as follows:

/FDepVector [

/Times-Roman findfont

/Times-Bold findfont

/Times-Italic findfont

/Times-BoldItalic findfont

]

/Encoding [0 2 3 1]

Within the show string, a font code of 1 would map into Times-
Italic, as illustrated at right. Index 1 (from the font code) into
Encoding gives us the number 2; index 2 into FDepVector gives
us Times-Italic.

Next Page ->

Acumen Journal: PostScript Tech 17

Composite Fonts

Times-Roman

(\001A\002B) show

FDepVector

[0 2 3 1]Encoding

Times-Bold

Times-Italic

Times-BoldItalic

FMapType Finally, this numeric code indicates exactly how font codes and character codes are
packed into the show string. There are only two values I’m going to discuss here:

2 8/8 Mapping – The show string consists of alternating 8-bit font codes
and character codes. If we are using this mapping, and FDepVector and
Encoding are defined as on the previous page, the following call to show:

(\000A\001B\002C) show

Would print as follows:

ABC

You can use this mapping to support double-byte fonts.

3 Escape Mapping – Bytes within a show string are treated as character
codes until an escape character is encountered (by default, \377); the byte
following the escape character is a font code. The string starts out in font
0. Again, using our previous FDepVector and Encoding:

(This is Times \377\001Italic. \377\000And how are you?) show

Would print as:

This is Times Italic. And how are you?

The latter example is germane to our plot, since it would take three show’s with two
interleaved setfonts to print this without composite fonts. We’ll return to this later.

Next Page ->

Acumen Journal: PostScript Tech 18

Composite Fonts

Creating a
Composite Font Creating a composite font is relatively easy. Here, we create a composite font named

“Helv” that contains the four fonts in the Helvetica font family:

/Helv

<<

/FontType 0 % Composite font

/FontMatrix [1 0 0 1 0 0] % Identity matrix

/FDepVector [% Array of descendant fonts

/Helvetica findfont

/Helvetica-Bold findfont

/Helvetica-Oblique findfont

/Helvetica-BoldOblique findfont

]

/Encoding [0 2 3 1] % Map font codes to fonts

/FMapType 3 % Use escape mapping

>> definefont pop

/Helv 20 selectfont

72 600 moveto

(The \377\003Skink \377\001(N. Am.)\377\000 is a cross between...) show

showpage

Next Page ->

Acumen Journal: PostScript Tech 19

Composite Fonts

The Skink (N. Am.) is a cross between...

This file is on the
Resources page of the
Acumen Training website.

http://www.acumentraining.com/resources.html

Discussion This example uses bits and pieces we have already discussed, so I won’t repeat the
descriptions of FDepVector, etc. Overall, the program is pretty straightforward:

/Helv
<<

...
>> definefont pop

We create a dictionary and turn it into a font named Helv. Because FontType is 0 within
the dictionary, the font is a composite font.

/Helv 20 selectfont
72 600 moveto

Note that you use a composite font just as you do any other PostScript font; findfont,
findresource, selectfont, and all the other PostScript font operators make no distinction
between composite fonts and any other font type.

(The \377\003Skink \377\001(N. Am.)\377\000 is a cross between...) show

And finally, here is the single call to show that prints text in three different fonts. Note
that we are using escape mapping, so the string starts out in font 0 (Helvetica, in our
case). This string prints out as:

Next Page ->

Acumen Journal: PostScript Tech 20

Composite Fonts

The Skink (N. Am.) is a cross between...

Why Is This Cool? Consider our text from the previous example. A typical PostScript driver would print
this line of text without composite fonts, generating PostScript that looks like this:

% In the prolog...

/F1 /Helvetica findfont 20 scalefont def

/F2 /Helvetica-Bold findfont 20 scalefont def

/F3 /Helvetica-Oblique findfont 20 scalefont def

% Later, in the script...

72 600 moveto

F1 setfont

(The) show

F2 setfont

(Skink) show

F3 setfont

((N. Am.)) show

F1 setfont

(is a cross between...) show

Note that we need four shows and three intermediate setfonts to print this text,
compared with the previous example’s single show:

(The \377\003Skink \377\001(N. Am.)\377\000 is a cross between...) show

Next Page ->

Acumen Journal: PostScript Tech 21

Composite Fonts

Driver Implications A PostScript driver could create a single composite font that contains all of the fonts
used in that document, scaled as needed.

/AllFonts

<<

/FontType 0

/FontMatrix [1 0 0 1 0 0]

/FDepVector [

/Helvetica findfont 20 scalefont

/Helvetica-Bold findfont 20 scalefont

/Helvetica-Oblique findfont 20 scalefont

]

/Encoding [0 1 2]

/FMapType 3

>> definefont pop

It could then generate a single setfont at the beginning of each page:

/AllFonts findfont setfont

For the remainder of the page, it would never need to change fonts, instead placing
appropriate font codes into its show strings.

(In their hit single \377\002Don’t Touch My Bric-a-Brac\377\000 the) show

Next Page ->

Acumen Journal: PostScript Tech 22

Composite Fonts

Try It! This topic has long been a bit of an obsession with me. I am convinced that composite
fonts could moderately speed up and considerably tidy up the PostScript generated by
PostScript drivers. In the Advanced PostScript class I tend to harp on this during the
Composite Font discussion. Some of my students (particularly those who are doing
variable data printing and other tasks where they write their own PostScript code) have
adopted this technique and seem to like it quite a bit.

Give composite fonts a try, if you are printing text.

What can it hurt? And it would make your mother so happy.

Return to Main Menu

Acumen Journal: PostScript Tech 23

Composite Fonts

Acumen Journal 24

Page Title

Schedule of Classes, May – July, 2002
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes
PostScript Foundations May 13 – 17 July 29 – Aug 2

Advanced PostScript June 24 – 28

PostScript for Support
Engineers June 3 – 7

Jaws Development July 23 – 26

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration →

Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes →

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials Jun 20 (1⁄2-day, morning)

Interactive Acrobat

Creating Acrobat Forms Jun 20 (1⁄2-day, afternoon)

Troubleshooting with
Enfocus’ PitStop June 21 (Full day)

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1⁄2-day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Quarterly Acrobat
Classes in SoCal In response to continual inquiries, Acumen Training will now be offering its Acrobat classes

in Costa Mesa, CA. For the moment, this makes them of interest mostly to people in
the Los Angeles area, but one must start somewhere.

The first classes will be offered June 20 and 21. The 1⁄2-day Acrobat Essentials and
Creating Acrobat Forms classes will be conducted on the 20th and the PitStop course
on the 21st. See the Acumen Training website for course descriptions, pricing, etc.

Credit Card
Payments Acumen Training is now accepting credit cards for on-line payment of class fees for the

Costa Mesa classes. When you register for class on-line, there is a button that takes
you to the on-line payment page. Of course, I still accept payment by company check,
as well.

Note that a 5% surcharge applies to PostScript classes that are paid by credit card.

Return to First Page

Acumen Journal: What’s New

What’s New?

http://www.acumentraining.com

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you regret
having ever learned to read?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or
PostScript? Feel free to email me about. I’ll answer your question if I can. If enough
people ask the same question, I can turn it into a Journal article.

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Distiller Compression Options

	btnNext:
	btnPrev:
	btnHome:

