
Table of Contents

The Acrobat User The JavaScripter: A Simple Blinking Button
This month, we start the JavaScripter: an occasional series of articles on using JavaScript
in Acrobat. Our first article describes how to make a blinking button,
as at right. The technique applies to a variety of animation effects.

PostScript Tech A PostScript Profiler (Sort of...)
We create a PostScript header that, when placed in front of another piece of PostScript,
counts the number of times each PostScript operator is executed. This gives us an
excuse to see how to do a mass redefinition of PostScript operators.

Class Schedule May–Jun–Jul

What’s New? A New Book: Extending Acrobat Forms with JavaScript
John has a new book out: a beginners’ guide to using
JavaScript in Acrobat forms.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 25 © 2003 John Deubert, Acumen Training

John Deubert’s Acumen Journal, May 2003

Acumen
Training

The JavaScripter: Creating a Simple Blinking Button
This month, we start The JavaScripter, a series of occasional articles that explore some
of the interesting and useful things you can do with JavaScript in Adobe Acrobat. These
are intended for the advanced beginner who has at least some JavaScript experience,
about as much as you would get from my new book, Extending Acrobat Forms With
JavaScript. Nonetheless, there will always be enough background information so that
the article will be useful even if you are a complete beginner.

For our first article in the series, we shall see how to make a simple
blinking button, like the one at right. This script requires Acrobat 5
or later; if you are reading this Journal issue with Acrobat 4, the button won’t blink.

Let’s look at how to do it.

Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Overview The project’s starting point is a simple, non-blinking button initially
colored a dark red, like the top illustration at right. To make this
button blink, we will change its color periodically—every half-second
or so—toggling between the button’s initial color and a bright red.

The setInterval method We are going to do this with a call to the Acrobat JavaScript app
object’s setInterval method:

timeoutObj = app.setInterval("JS Code", millisecs)

The setInterval method tells Acrobat to execute the JavaScript
code that’s in the quotes once every so many milliseconds. Thus, the following line:

timeoutObj = app.setInterval("app.beep()", 1000)

will cause Acrobat to beep once per second.

The setInterval method returns something called a timeout object. This is the
object which you can later use to turn off the periodic process you start with
setInterval. You do this by calling the app object’s clearInterval method:

app.clearInterval(timeoutObj)

This halts the specified setInterval process. (That periodic beep gets mighty annoying
after an hour or two.)

Next Page ->

Acumen Journal: Acrobat User 3

Creating a Blinking Button

Again, this article’s
discussion presumes you
have had at least some
JavaScript experience. In
particular, I’m assuming
you know some of the
terminology: “method,”
“object,” etc.

If you don’t know
JavaScript, you can still
follow the directions and
type in the scripts;
everything will work as
described.

The Document
JavaScript We want our button to start blinking as soon as we open the document, so we are

going to make our call to setInterval in a Document JavaScript; you may remember
that document JavaScripts are executed by Acrobat when the document opens.

What You Need to Start Before you start, the PDF file with the button must be open in Adobe Acrobat. Also, you
must know the JavaScript name of the button that should blink; in our sample code,
we shall assume the button’s name is “btnClickMe.” (See your favorite Acrobat forms
book for a reminder of how to create and name buttons.)

Entering the JavaScript To type in the Document JavaScript, start with the document open in Acrobat and do
the following:

1. Select Tools>JavaScript>
Document JavaScripts.

Acrobat will present you with the
JavaScript Functions dialog box
(next page).

Next Page ->

Acumen Journal: Acrobat User 4

Creating a Blinking Button

If you want to follow
along, the file
BlinkingBtn.pdf on the
Acumen Training
Resources page has a
button you can turn into
a blinker.

http://www.acumentraining.com/resources.html

2. Type a script name into the Script
Name field (I suggest
“ToggleButton”) and click the Add
button. What you choose as a
script name is not too important;
anything short and descriptive will
do.

Acrobat will present you with the
JavaScript Edit dialog box, below.
This will have a bit of text already
entered into it, as in the illustration.

Next Page ->

Acumen Journal: Acrobat User 5

Creating a Blinking Button

3. Erase the initial text in the JavaScript Edit dialog box and type in the following
script. (We shall step through the details of what this is doing shortly.)

var btnOn = false // Create a Boolean variable, set it to false

function ToggleButton() // Start of a function definition

{

var btn = this.getField("btnClickMe") // Get the button “btnClickMe”

btnOn = !btnOn // Reverse the value of btnOn
if (btnOn) // Is btnOn now true?

btn.fillColor = color.red // Yes: set the button’s color to red

else // Otherwise...

btn.fillColor = ["RGB", .5, 0, 0] // Set the color to dark red

} // End of our function

// Now turn on the blinking:

if (app.viewerVersion >= 5) // But only if our Acrobat is version 5 or later

var blinkObject = app.setInterval("ToggleButton() ", 500)

When you are finished, click the OK button, returning to the JavaScript Functions
dialog box.

4. Click the Close button in the JavaScript Functions dialog box, returning to the
Acrobat document.

5. Save and re-open the document and your button will start blinking.

Next Page ->

Acumen Journal: Acrobat User 6

Creating a Blinking Button

Remember that the
double slashes (“//”)
denote a comment that
is ignored by JavaScript.
You don’t need to type in
anything from the // to
the end of the line.

Stepping Through
the Code This JavaScript does three things:

• It defines a Boolean (i.e., true-or-false) variable named “btnOn.”

• It defines a function named “ToggleButton.” This function reverses the value (true
becomes false, and vice versa) of the btnOn variable and then sets our blinking
button’s color to either bright or dark red, depending on btnOn’s new value.

• It executes the app.setInterval method, starting our button to blink.

Line by Line var btnOn = false

Here we create the variable btnOn. This variable has a Boolean value that we shall use
to indicate whether the button is currently on (bright red) or off (dark red). Each time
we change the color of the button, we shall reverse the value of this variable.

function ToggleButton()
{

We now start our definition of ToggleButton.

var btn = this.getField("btnClickMe")

ToggleButton first gets a reference to our button (named “btnClickMe” in this example)
and assigns the reference to the variable, btn. Remember that “this” refers in this context
to the current document. (Think of it as meaning “this document.”)

Next Page ->

Acumen Journal: Acrobat User 7

Creating a Blinking Button

btnOn = !btnOn

This cryptic looking line reverses the value of our Boolean variable, btnOn. In JavaScript,
the exclamation point (pronounced “not”) reverses the sense of whatever Boolean
value follows it. Thus, “!btnOn” (to be read, “not btnOn”) has the value opposite that
of btnOn: true if btnOn is false, false if the variable is true.

if (btnOn)
btn.fillColor = color.red

else
btn.fillColor = ["RGB", .5, 0, 0]

If you have read the JavaScript book, you have seen code similar to this before. Loosely
interpreted, this block of code says: “If btnOn has a value of true, then set the button’s
fill color (that is, its background color) to red; otherwise, set the button’s fill color to
an RGB value of .5, 0, 0.”

Color component values in Acrobat JavaScript vary from 0 to 1, with zero meaning “off.”

}

The close brace ends our function definition.

Whenever we want to reverse the color of our button, we need simply call
ToggleButton().

Next Page ->

Acumen Journal: Acrobat User 8

Creating a Blinking Button

if (app.viewerVersion >= 5)
var blinkObject = app.setInterval("ToggleButton()", 500)

Finally, we start our button blinking with a call to the app object’s setInterval
method. We only want to do this if the document is being viewed with a recent version
of Acrobat; setInterval didn’t exist in Acrobat 4 or earlier.

The above lines of JavaScript first check to see if our current viewer (Acrobat, Reader,
etc.) has a version number greater than or equal to 5. If so, our script tells Acrobat to
execute the JavaScript statement “ToggleButton()” every 500 milliseconds. Every
half-second, Acrobat will call our ToggleButton function, reversing the color of the
Click Me button.

Our button is now blinking!

Timeout Objects Note that setInterval returns something called a Timeout object; this is an object
that represents our recurring process within this and other JavaScripts in our Acrobat
document. In our case, we store this object in a variable named “blinkObject.” We will
use this object in the next section to halt the blinking.

Customizing the Script To customize the above script to your own form, you’ll need to make the following
changes as appropriate to your form:

• In the definition of ToggleButton, change the button name in the call to getField
to the name of your button.

• Also in ToggleButton, change the “on” and “off” colors to whatever you want; see
the note below on specifying color in JavaScript. Next Page ->

Acumen Journal: Acrobat User 9

Creating a Blinking Button

• In the call to setInterval, change the interval to the number of milliseconds you
wish.

Specifying Color Every form field has three color properties that you can usefully change in a JavaScript:

fillColor The background color of the field.

borderColorThe border color of the field.

textColor The color used for the field’s text.

You set these colors by getting a reference to the form field (using app.getField)
and then assigning colors to these properties:

var myFld = app.getField("myFieldName")

myFld.fillColor = color.red

myFld.borderColor = color.blue

myFld.textColor = ["RGB", .5, 1, .5]

Acrobat JavaScript defines names for commonly-used colors:

Next Page ->

Acumen Journal: Acrobat User 10

Creating a Blinking Button

JavaScript Color Names

color.transparent color.red color.cyan
color.black color.green color.magenta
color.white color.blue color.yellow
color.gray color.ltGray color.dkGray

If you want a color other than one of those listed above, then you may use an array
that contains an RGB, CMYK, or grayscale color, as in the textColor line, above. The first
element of the array is a string that indicates what kind of color you want: “RGB”,
“CMYK”, or “Gray”. The remaining elements are the actual color specification, each a
value from 0 to 1. (A value of 0 means “no light” or “no ink.”)

Turning off the
Blinking At this point, we’ve taught Acrobat how to

make our button blink; it would seem as
though we are done. However, if we leave
things as they are, something odd happens:
when we close the document, we get a
series of JavaScript errors, reported in the
JavaScript console as at right.

My theory as to why this happens is that,
when you close the document, Acrobat
cleans up the memory occupied by the
various JavaScript objects and functions (such as ToggleButton) before it cancels
any recurring processes specified by setInterval. Thus, every half-second, Acrobat
is still trying to execute the ToggleButton procedure, which has already been
destroyed by the closing of the document.

To avoid this, we need to explicitly turn off our setInterval process when the document
closes. We do this with a JavaScript that calls the app object’s clearInterval method:

app.clearInterval(myTimeoutObject) Next Page ->

Acumen Journal: Acrobat User 11

Creating a Blinking Button

The clearInterval method takes a timeout object, created earlier by a call to
setInterval, and turns off the corresponding recurring process. We shall call
clearInterval in a Document Action associated with the Document Will Close event.

Document Action Script Document Actions are associated with events that affect the document as a whole:
opening, closing, etc. We are going to attach a JavaScript that turns off our blinking
button with the Document Will Close event, that occurs just before the document closes.

Attaching the Script To attach the JavaScript to the document’s Will Open event, start with the Acrobat file
open, and do the following:

1. Select Tools > JavaScript > Set
Document Actions…

Acrobat will present you with the
Document Actions dialog box (next page).

Next Page ->

Acumen Journal: Acrobat User 12

Creating a Blinking Button

2. In the When this happens list, select
Document Will Close and then click the Edit
button.

Acrobat will present you with the same
JavaScript Edit dialog box we saw when we
typed in our Document JavaScript.

3. Type the following two lines of JavaScript
into the dialog box:

if (app.viewerVersion >= 5)

app.clearInterval(blinkObject)

You may remember that blinkObject was
the variable into which we stored the
Timeout object returned by our earlier call to
setInterval. Again, we want to call
clearInterval only if we have a recent
version of Acrobat, so we check for that with
an if clause.

4. Exit out of all dialog boxes until you are back
to the Acrobat document.

That’s it; we’re done. Nothing dramatic happens
as a result of typing in this Document Action JavaScript; we simply won’t get that
annoying set of errors when we close the document.

Next Page ->

Acumen Journal: Acrobat User 13

Creating a Blinking Button

Conclusion As you can see from this example, you can add some very nifty effects to your Acrobat
forms with very simple JavaScripts. The JavaScripter articles will try to concentrate on
this: useful tasks that can be carried out with simple JavaScripts. I will be going out of
my way to not duplicate examples from my JavaScript book, so these articles will serve
as additional “lessons” for readers of that book.

If there is something you would like to appear in the JavaScripter articles, feel free to
drop me an email.

Return to Main Menu

Acumen Journal: Acrobat User 14

Creating a Blinking Button

mailto:john@acumentraining.com

A PostScript Profiler (Sort of)
A couple months ago, a student asked me about writing a PostScript profiler, some-
thing that would tell you where a PostScript program is spending its time so you can
improve its execution speed. I know of no such beast offhand, but it sparked a discus-
sion about how one might go about at least counting the number of times a PostScript
program executes each of the PostScript operators. Not the same as a real profiler, but
it might be of some diagnostic use, we thought.

This month, we’ll look at a way of doing this.

We are going to define a PostScript header that can be
placed at the beginning of any PostScript code; the header
redefines all of the PostScript operators in systemdict so
that each operator increments a counter when executed.
The header also defines a procedure that will report the
results if you execute it after the target PostScript.

As an example, at right is part of the report that resulted
when I tested some Adobe Illustrator output. The report is
only minimally formatted and unsorted. We may look at
PostScript sorting routines in a future Journal article, if any-
one’s interested. (I have a swell Quicksort implementation.)

This topic will give us a chance to look at some of the ins
and outs of redefining PostScript operators.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

setglobal: 4
if: 4374
array: 4
dict: 63
currentglobal: 3
dup: 490
forall: 8
readonly: 1
put: 62
for: 1
exec: 14
get: 45
readline: 2053
dictstack: 1
...

Redefining
Operators In principle, redefining PostScript operators is relatively simple: just define a procedure

with the same name as the operator. Since that procedure must invariably go into
userdict or some other dictionary higher on the Dictionary stack than systemdict, our
redefinition will be seen by the PostScript interpreter at name lookup time.

Thus, the following PostScript code:

/moveto { 1.1 mul moveto } bind def

100 100 moveto

will leave the current point at the position 100,110. Note that our redefinition of move-
to itself calls moveto. This is not recursive, as it at first seems, because we handed our
procedure body to bind before we executed def. The bind operator replaced the name
“moveto” in the procedure body with the definition of moveto at the time that the bind
took place, that is, before our redefinition had occurred with def.

If you paste the redefinition of moveto at the beginning of someone else’s Postscript
code, that output would have all calls to moveto displaced by 10% along the y axis.
(Why would you want to do that? I don’t know; it wouldn’t even be very amusing as a
prank, as far as I can see.)

Next Page ->

Acumen Journal: PostScript Tech 16

A PostScript Profiler

Making Your Own
systemdict The problem with the simple moveto redefinition above is that if you were to paste it in

front of randomly-chosen PostScript output from the likes of, say, QuarkXpress, it may
well fail to be called. Many applications and drivers bypass any such redefinitions by
going directly to systemdict for their Postscript definitions:

/m systemdict /moveto get def

Unfortunately, this very effectively ties the name m to the definition that moveto has in
systemdict, not in whatever dictionary contains our redefinition.

The workaround is to create your own dictionary and call that “systemdict.” You can
copy everything from the original systemdict into your replacement and then add your
redefinitions. Then place your systemdict and the original globaldict and userdict onto
the dictionary stack; whenever anyone gets a definition out of systemdict, they’ll get it
out of your version of systemdict.

/systemdict0 systemdict def % Create a new dictionary

/systemdict systemdict dup length dict copy def % Copy systemdict into it

systemdict begin % This is our systemdict

/moveto { 1.1 mul moveto } bind def % Redefine moveto

globaldict begin

userdict begin

%===================

% QuarkXpress’ PostScript goes here

% ...

/m systemdict /moveto get def % This gets our redefinition

Next Page ->

Acumen Journal: PostScript Tech 17

A PostScript Profiler

Creating the Counter
Procedures Presume for the moment that we have defined a procedure called IncrementCount that

takes an operator name from the operand stack and increments the execution count
associated with that operator. (We’ll look at IncrementCount’s definition later.) What I
want to do in my “profiler” is redefine each operator to a procedure that executes
IncrementCount with that operator’s name and then executes the original operator.

Thus, our redefinitions should look something like this:

/systemdict0 systemdict def

/systemdict systemdict length dict def

systemdict begin

/IncrementCount % /name => ---

{

... some PostScript stuff

} bind def

/moveto { /moveto IncrementCount moveto } bind def

/add { /add IncrementCount add } bind def

... etc.

Making these procedure definitions will get tedious after about the 150th PostScript
operator, so we’ll want to automate the process.

Let’s look at the full full PostScript code:

Next Page ->

Acumen Journal: PostScript Tech 18

A PostScript Profiler

The Code /str 64 string def % Scratch string
/dictstack0 countdictstack def % Used for cleanup

/profileDict << % This dictionary holds our op counts
systemdict { pop 0 } forall % Each operator name is associated with

>> def % the number of executions.

/IncrementCount % /name => ---
{ profileDict exch % => <<profileDict>> /name

2 copy get % => <<profileDict>> /name count
1 add % => <<profileDict>> /name count+1
put % => ---

} bind def

/systemdict0 systemdict def % Save the old systemdict...
/systemdict systemdict length dict def % and make a new one

% Load the new systemdict with replacements for the operators

systemdict0 % For each key-value pair in original systemdict

{ dup type /operatortype eq % => /key val bool

{ [2 index % => /key val mark /key

/IncrementCount cvx % /key val mark /key <IncrementCount>

4 -1 roll % /key mark /key <IncrementCount> val

] % => /key [/key <IncrementCount> val]
cvx % => /key {/key <IncrementCount> val}

} if

systemdict 3 1 roll put

} bind forall Next Page ->

Acumen Journal: PostScript Tech 19

A PostScript Profiler

As usual, this PostScript
code is available on the
Acumen Training
Resources page. Look for
the file CountOps.ps.

http://www.acumentraining.com/resources.html

Some Utilities /StartProfiler % Call this immediately before the PS code you are counting
{ systemdict begin % Again, this is our systemdict

globaldict begin
userdict begin

} bind def

/StopProfiler % Call this immediately after the PS code you are counting
{ countdictstack dictstack0 sub { end } repeat } bind def

% This proc prints a report to stdout; it just dumps the contents of profileDict
/ReportCalls
{ profileDict

{ dup 0 eq
{ pop pop }
{ exch str cvs print (:) print = }
ifelse

} forall
} bind def

Now, Let’s try it out… % ======== Begin Test ===========
StartProfiler
72 600 moveto 100 100 rlineto 0 -100 rlineto closepath
stroke showpage
StopProfiler
% ======== End Test Subject ===========

ReportCalls
Next Page ->

Acumen Journal: PostScript Tech 20

A PostScript Profiler

This program produces
the following report, sent
to stdout:

moveto: 1
showpage: 1
stroke: 1
rlineto: 2
closepath: 1

Step by Step /str 64 string def
/dictstack0 countdictstack def

/profileDict <<
systemdict { pop 0 } forall

>> def

The program starts by defining three constants:

• str is a string buffer that we’ll use in reporting our operator count values.

• dictstack0 is the number of items on the dictionary stack at the start of the program;
this should be 3 (coiunting system-, global-, and userdict).

• profileDict is a dictionary that holds our operator counts. In each key-value pair, the
key is an operator name and the value is the number of times that operator has
been called, initialized to zero.

Note that we are populating this dictionary with a forall loop that piles alternating
operator names and zeros on the operand stack. Open-double-angle-brackets (i.e.,
“<<”) puts a mark on the stack; our loop dumps the alternating names and zeros
onto the stack; finally >> constructs the new dictionary, loading it with key-value
pairs taken from the items on the stack.

Define IncrementCount /IncrementCount % /name => ---

We define a procedure named IncrementCount. This procedure takes an operator name
from the operand stack and increments the corresponding value in profileDict.

Next Page ->

Acumen Journal: PostScript Tech 21

A PostScript Profiler

{ profileDict exch % => <<profileDict>> /name

IncrementCount starts by getting profileDict and exchanging the dictionary and name
on the operand stack; this puts them in the correct order for a later call to get.

2 copy get % => <<profileDict>> /name count

This incarnation of the copy operator takes an integer from the stack and copies the top
n items on the stack to the top of the stack. In our case, we push an additional
instance of profileDict and our operator name onto the stack. We then do a get, which
gets the current count value associated with that operator name out of profileDict.

1 add % => <<profileDict>> /name count+1
put % => ---

} bind def

IncrementCount ends by adding one to the operator count and then putting the result
back into profileDict.

Create our own systemdict /systemdict0 systemdict def % Save the old systemdict...
/systemdict systemdict length dict def % and make a new one

We save the original systemdict in a key-value pair named systemdict0. We then create
a new dictionary, the same size as the original systemdict, and save this new dictionary
with the name systemdict. Any future references to the name “systemdict” will yield
our new dictionary, not the orginal systemdict.

Next Page ->

Acumen Journal: PostScript Tech 22

A PostScript Profiler

Load our systemdict systemdict0
{

...
} bind forall

We are going to use a forall loop that steps through the original systemdict, doing the
following for each key-value pair:

• Look to see if the key-value pair is an operator definition (by seeing if the value is
of type operatortype.)

• If so, we shall construct a procedure body of the form

{ /key IncrementCount value }

where key is the operator name and value is the operator definition.

• Put this procedure into our new systemdict, associated with the original operator name.

In stepping through the loop, remember that when forall is given a dictionary and a
procedure, it puts each key-value pair onto the stack in turn and then calls the proce-
dure.

Here’s what happens within our loop:

{ dup type /operatortype eq % => /key val bool

We duplicate the value of the current key-value pair and test to see if it’s type is
“operatortype.” The eq leaves a Boolean value on top of the stack.

Next Page ->

Acumen Journal: PostScript Tech 23

A PostScript Profiler

{

This open brace starts an if clause that will be executed if the Boolean returned by eq
is true, meaning the value is an operator definition.

[2 index % => /key val mark /key

If the value is of type operatortype, then we put a mark on the stack (with the open
bracket) and copy the key to the top of the stack with 2 index.

Our plan is to construct an array containing the contents we want for our procedure
and then convert that array to a procedure with cvx. As I said on the previous page,
the procedure we are constructing from the key-value pair should be of the form:

{ /key IncrementCount value }

This consists of the current key, the executable name “IncrementCount,” and the value
of the current key-value pair.

Our 2 index has us part-way there: we have the mark (the beginning of the eventual
procedure) and the key name on the stack.

/IncrementCount cvx % => /key val mark /key <IncrementCount>

Now we place the name IncrementCount on the stack and convert it to executable.
Note that we had to start with the literal name, so that PostScript would not immediately
look up the name and execute the procedure during the construction or our array.

Next Page ->

Acumen Journal: PostScript Tech 24

A PostScript Profiler

4 -1 roll % => /key mark /key <IncrementCount> val

Finally, we bring the value to the top of the stack using roll, everyone’s favorite stack
operator.

] % => /key [/key <IncrementCount> val]
cvx % => /key {/key <IncrementCount> val}

We can now create our procedure body. We create the array using the close bracket
operator, “]”. This leaves on the stack a literal array containing our procedure contents.
The call to cvx (“convert to exectutable”) converts the literal array to an executable
procedure body.

} if

Our if clause exits with the key on the stack and, above that, our newly-constructed
procedure body. If the if block wasn’t executed (because this key-value pair did not
represent an operator definition), then the stack will now contain the original key-value
pair placed on the stack by forall.

systemdict 3 1 roll put % This is going into our systemdict
} bind forall

Our forall loop procedure ends by putting the two items on the stack (the key and
either the procedure body or the original value) into our newly-made systemdict.

Our version of systemdict now contains all of the PostScript operator names, each
associated with a procedure that increments the appropriate value in profileDict and
then executes the original operator definition.

Next Page ->

Acumen Journal: PostScript Tech 25

A PostScript Profiler

Define Utility Procedures /StartProfiler
{ systemdict begin

//globaldict begin
//userdict begin

} bind def

The StartProfiler procedure simply places our systemdict on top of the dictionary stack
and piles the standard globaldict and userdict on top of it. From now on, references to
PostScript operators will increment the tally in profileDict.

/StopProfiler
{ countdictstack dictstack0 sub { end } repeat } bind def

StopProfiler simply removes everything off the dictionary stack except the three default
dictionaries normally there at startup.

/ReportCalls
{ profileDict

{ dup 0 ne
{ exch str cvs print (:) print = }
{ pop pop }
ifelse

} forall
} bind def

And, finally, ReportCalls steps through all the key-value pairs in profileDict and prints
to stdout any non-zero values.

Next Page ->

Acumen Journal: PostScript Tech 26

A PostScript Profiler

Using the Profiler Our sample code ends with an invocation of StartProfiler.

% ======== Begin Test ===========
StartProfiler
72 600 moveto 100 100 rlineto 0 -100 rlineto closepath
stroke showpage
StopProfiler
% ======== End Test Subject ===========
ReportCalls

We call StartProfiler, execute the PostScript code we want to test, call StopProfiler,
and, finally, execute ReportCalls, which dumps the non-zero counts to stdout.

Using the Counter This seems to work reasonably well. Paste everything through the invocation of
StartProfiler in front of any arbitrary PostScript and calls to StopProfiler and ReportCalls
afterward and it emits an operator count. It seems to work with all the PostScript code
I could easily find, rummaging around on my hard disk.

Is it useful? I don’t know exactly how useful this is, from a diagnostic standpoint. Certainly, I think it’s
a nice demonstration of some programming techniques. I would be curious to know if
anyone ends up using this to do something akin to real profiling of their PostScript code.

Is it Fun? Well, yes!

(However, see past, plentiful comments about the simplicity of my social life.)
Return to Main Menu

Acumen Journal: PostScript Tech 27

A PostScript Profiler

Acumen Journal 28

Page Title

Schedule of Classes, May – Jul 2003
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes

PostScript Course Fees PostScript classes cost $2,000 per student.

On-Site Classes These classes may also be taught on your organization’s site. Registration Info →

Go to www.acumentraining.com/on-site.html for more information. Acrobat Classes →

PostScript Class Schedule

PostScript
Foundations

May 19–23 Jul 14–18

Variable Data
PostScript

Jun 16–20

Advanced
PostScript Jun 2–6

PostScript for
Support Engineers May 26–30 Jul 28–Aug 1

Jaws Development On-site only

New!

http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website
regarding setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Troubleshooting with
Enfocus’ PitStop

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1 -day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Hooray!
A New Book I have a new book out: Extending Acrobat Forms

With JavaScript. This book is a non-programmer’s
guide to adding features to your Acrobat forms using
JavaScript. If you are a form designer with good
Acrobat experience, but have never written a line of
JavaScript, C, or other programming code before
(and were pretty sure you never wanted to do so),
then this book is for you.

We introduce programming concepts as we learn how
to add specific enhancements to your forms; for
example, we talk about arrays while adding a price
table to a form, case statements while creating a
pop-up menu, if…else commands while checking the
version of the user’s Acrobat viewer.

Extending Acrobat Forms is available from Amazon.com and bookstores everywhere.

For a list of chapters and other information, go to:

www.acumentraining.com/Book-AcroJS.html

Return to First Page

Acumen Journal: What’s New

What’s New?

http://www.acumentraining.com/Book-AcroJS.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Does it make you acutely
aware of your tongue?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	btnClickMe:
	btnHome:
	btnPrev:
	btnNext:

