
Table of Contents

The Acrobat User Fixing Acrobat 5’s Line Widths
Acrobat 5 tends to draw lines too thick, compared to Acrobat 4. This month we’ll see how to
fix this.

PostScript Tech Changing Character Widths with a Metrics Dictionary
PostScript provides a little-used mechanism for overriding the character widths in a font.
By providing a dictionary named Metrics, you can specify your own character widths.

Class Schedule September-October-November-December
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? Drop by at Seybold.
I’ll be teaching three classes at the San Francisco Seybold Seminars in September.
Come by and say Hello!

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, © 2001 John Deubert, Acumen Training

John Deubert’s Acumen Journal, September 2001

Acumen
Training

Fixing Acrobat 5’s Thin Lines
I like Acrobat 5. It added a lot of useful features; its JavaScript interface is far richer
than 4’s; without a doubt, it is a significant improvement over Acrobat 4.

Except for one thing: when displaying a PDF document, Acrobat 5 consistently displays
thin horizontal and vertical lines too thick, compared to those very same hairlines (in
the very same PDF file) in Acrobat 4. They print fine; they just look bad on the screen.

For example, at right are a pair of screen shots, one each from
Acrobat 4 and 5, taken from the March 2001 issue of the Acumen
Journal. The Acrobat 5 underline strokes are far thicker than
they should be.

Happily, this is fixable. There is a PostScript snippet that you
can paste into your prologue.ps file that will make hairlines
come out correctly when you make a PDF file. You can also add the same fix to an
existing PDF file using an Action List in Enfocus’ PitStop plug-in.

We’ll discuss both of these methods in this month’s Acrobat User.

Next Page ->

The Acrobat User

Acumen Journal: The Acrobat User

Same Hairline in Acrobat 4

Hairline in Acrobat 5

Background PDF line widths are floating point numbers; that is, line widths can have a fractional
values, such as 0.172 points. However, the computer screen on which the document is
displayed creates its image out of discrete pixels, which may be only on or off and
nothing in between.

When displaying a PDF file, therefore, Acrobat must decide how to paint fractional-pixel-
wide lines on a screen; it must somehow round off the requested line width to an exact
number of screen pixels.

There are several ways of doing this. Acrobat 5 seems to use a very conservative
method that always turns on an even number of screen pixels for its line widths.

You can see this in the screen shot at
right, taken of a PDF file in Acrobat 5;
here we have a set of vertical lines, each
1/4 point thicker than the one before.

As you can see, even very thin lines are
painted two pixels thick; what should be
quarter- or half-point lines are being
painted two points thick. (For comparison, there is a 1-pixel thick line running beneath
the screen shot.)

At a specified line width of 21/4 points, Acrobat 5 jumps to painting the lines 4 pixels
(and, therefore, 4 points) thick.

This is not a very accurate rendering of the desired line width.
Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 2

Automatic Stroke
Adjustment PostScript printers also have this problem, although the line width inaccuracies are less

significant, because printer pixels are much smaller than printer pixels. To fix this
imprecision in line width rendering, PostScript Level 2 added a new feature called
Automatic Stroke Adjustment. (If you’ve taken the PostScript Foundations class, we’ve
discussed this feature; check your student notes for more technical details.)

When automatic stroke adjustment is
turned on, PostScript minutely adjusts
the position of each line against the
screen’s or printer’s pixel grid to give
more accurate results in drawing the line.
Our array of lines would now paint as in
the screen shot at right.

Note that line widths are now correctly rounded to the most accurate number of screen
pixels. At a linewidth of 1.5 points, the painted line is rounded up to 2 screen pixels. At
2.5, the line is bumped to 3 pixels, and so forth.

The question is, “How do we activate automatic stroke adjustment in a PDF file?”

I’m glad you asked me that question…

There are two ways: in Distiller using a prologue.ps file or in Acrobat using Enfocus’
PitStop plug-in.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 3

Distiller and
Prologue.ps You can tell Distiller to turn on automatic stroke adjustment in your PDF files by placing

a line of PostScript in your prologue.ps file. (The following discussion will look familiar
if you read the July Journal; we used prologue.ps in that article, too.)

prologue.ps/epilogue.ps All versions of Acrobat Distiller will examine the Data folder in the Distiller folder for a
pair of PostScript files named prologue.ps and epilogue.ps. If it finds either or both of
them, Distiller will execute the contents of prologue.ps before each PostScript file it
processes and epilogue.ps after each file. This allows a PostScript programmer to
change the behavior of Distiller.

In our case, we are going to create a prologue.ps file that turns on automatic stroke
adjustment.

There will be three steps to this process:

1. Create the prologue.ps file.

2. Place it in the Data folder for Distiller to find.

3. Tell Distiller to look for prologue.ps/epilogue.ps when distilling PostScript files.

Let’s do it.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 4

1. Create prologue.ps First let’s create our prologue.ps file.

1. Launch your favorite text editor and create a new file.

2. Type in the following PostScript code:

<< /BeginPage { pop true setstrokeadjust } >> setpagedevice

Spacing is not significant here; you can have any number of spaces or tabs between
words. Case is significant, however; upper and lower case must be exactly as written.

If you already have a prologue.ps file, simply add the above line to those already
there.

3. Save the file with the name prologue.ps.

If you used a word processor (Microsoft Word, etc.), rather than a text editor to create
this file, make sure you save the file as plain text.

2. Place the File in “Data” For Distiller to find this file, you must place it in the Data folder,
located in the same folder as Distiller. Just drag it to the folder.

By the way, the Acrobat 4 documentation says the prologue.ps
file should be in the same folder as Distiller. This doesn’t seem to
work; put it in the Data folder.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 5

3. Tell Distiller Lastly, we need to tell Distiller to
look for the prologue.ps file.

We do this by going to
Settings>Job Options and clicking
on the Advanced tab. The topmost
control is a check box labeled Use
Prologue.ps and Epilogue.ps.

Turn this on.

That’s all From now on, Distiller will apply
automatic stroke adjustment to all
the PDF files it creates. Your thin
lines will all come out appropriately
stroked.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 6

Fixing Line Widths
in a PDF File Up to now, we’ve talked about creating PDF files in Distiller with Automatic Stroke

Adjustment turned on.

But what if it’s too late for that? What if you already have a PDF file that displays incor-
rect line widths?

You can turn on automatic stroke adjustment in a PDF file with my favorite PDF utility:
Enfocus’ PitStop.

Enfocus’ PitStop Enfocus Corporation’s PitStop plug-in for Acrobat is an incredibly handy
tool. If you’re going to own only one PDF tool, it should probably be
PitStop. It’s a combination preflighter, editor, and global transmogrifier for
PDF files. I have found it endlessly handy over the years.

If you don’t have it, you can get a demo from the Enfocus website
(www.Enfocus.com) that will let you try out the fix we are discussing here.

PitStop Action Lists One of PitStop’s more impressive features is the ability to create an Action List, a set
of steps that may be played back as a macro. We are going to create an Action List
that turns on automatic stroke adjustment in the current PDF file.

We shall first talk about how to create the Action List and then see how to use it.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 7

http://www.enfocus.com

Creating the Action List Let us first create the Action List. I am not going to be explaining the Action List
mechanism in detail; it’s a long story, the PitStop on-line reference goes into it a bit,
and the Acumen Training PitStop class talks about it to completion.

The steps below assume, of course, that you have installed PitStop and have Acrobat
running.

1. Open PitStop Action List
Control Panel In the Acrobat Window menu, select

Show PitStop Action List Panel…

PitStop will present you with its Action List
Control Panel. This dialog box has two tabs:

Executing Here are the controls that
let you run an Action List.

Managing Here you create and edit
Action Lists.

Down the left side of the control panel
is a list of all currently-defined Action
Lists.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 8

http://www.acumentraining.com/Descr_PitStop.html

2. Go to the Managing Tab Click on the Managing tab in the control
panel. You will now be looking at the
controls that let you create and edit
an Action List.

If we were going to edit an existing
Action List, we would select the Action
List’s name and click the Edit menu.

We, of course, are going to create a
new Action List.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 9

3. Click the “New” Button PitStop will display the Action
List Editor.

On the left side of this dialog
box is a list, initially empty, of
the actions making up this
Action List. You add actions to
this list by clickin on the “Add”
button.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 10

4. Click the Add button PitStop will present you with a dialog box
displaying all the actions you may add to an
Action List.

5. Click the “Changes” tab Here you get a list of all the changes you may
make to a PDF file from within an Action List.

6. Select “Change Stroke
Adjustment” Scroll down to “Change Stroke Adjustment” and

click once on the entry.

7. Click the “Add” button This adds the action to the Action List.

8. Click the “Close” button This closes the dialog box.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 11

We are looking once again at
the Action List Editor dialog
box, now showing the single
action in our Action List.

Make sure that the On radio
button to the right is selected.

9. Click the “OK” button This will return you to the
Action List Control Panel.

That’s it; we have successfully
created an Action List that will
fix the too-thick hairlines.

Let’s see how we apply this
Action List to a PDF file.

Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 12

Using the Action List Using the Action List is pretty easy: Open the PDF file, open the Action List control
panel, and click on “Execute.” Let’s look at this in more detail.

The following steps assume that you’ve already opened your PDF file in Acrobat.

1. Open Action List Panel In the Acrobat Window menu, select
Show PitStop Action List Panel…

As before, PitStop will present you with the
Action List Control Panel.

2. Select the Executing tab If necessary, select the Executing tab.
This is the tab from which you run an
Action list.

3. Select the Stroke
Adjustment Action List Click once on the Action List we created

earlier. (It will probably be at the
bottom of the list of Action Lists.)

4. Click the Execute button PitStop will turn on stroke adjustment in your PDF file. You should see hairlines
immediately assume their proper widths. Next Page ->

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 13

Once you have created both the prologue.ps and the PitStop Action List, you should
never again be plagued by annoyingly thick hairlines.

Neither of these methods have any particular drawback. Once set up, the prologue.ps
runs without any intervention on your part. For those PDF files that already have a
hairline problem, I have found that running the Stroke Adjustment Action List is so
quick that I hardly notice I’m doing it anymore.

Return to Main Menu

Acumen Journal: Acrobat User

Fixing Acrobat Thin Lines - Page 14

Overriding Character Widths with Metrics
One of my first contract programming jobs after I left Adobe Systems (a long time
ago) was to help a client build a simple variable-data catalog printing system in
PostScript. One of the requirements was for a fixed-pitch version of Helvetica. This
turned out to be remarkably simple to do, so I thought I’d trot it out for this month’s
PostScript Tech.

Metrics Dictionaries The PostScript font mechanism provides a means for easily overriding a font’s native
character widths: a Metrics dictionary. Simply place this dictionary in the font
dictionary and PostScript will use the character widths it defines.

This month, we’ll see how Metrics dictionaries work and how to put one into a font.
While we’re at it, we’ll make a fixed-pitch Helvetica, just for old times’ sake.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

Metrics Dictionaries A Metrics dictionary contains key-value pairs that associate character names with metric
information for those characters. Specifically, each character name may be associated
with one of three things:

wx A single number, indicating the horizontal width of the
character; that is, the horizontal distance the current point
should move after printing the character. The vertical dis-
tance and horizontal side-bearing are zero.

This value is expressed in character space units
(one-thousandth of an em for Type 1 fonts).

[sx wx] An array of two numbers, indicating the left side bearing
(i.e., the white space between the current point and the
character) and the character width.

[sx wx sy wy] An array of four numbers, indicating the x and y side
bearings and character widths.

These may be mixed together in a single Metrics dictionary; you need not give the
same type of value to all of the character names.

Next Page ->

Acumen Journal: PostScript Tech

Overriding Character Widths - Page 2

wx

wxsx

Making Fixed-
Pitch Helvetica To make a fixed-pitch version of

Helvetica, all of whose characters
move the current point the same distance, we need to place a Metrics dictionary into
the Helvetica font dictionary.

The keys in this dictionary will be the character names in the Helvetica font; associated
with each key we shall have the number 1000, this being the size of an em in a Type 1
font. Thus, each character in our fixed-pitch font will move the current point by an
amount equal to the point size.

Changing Fonts As you remember if you took the PostScript Foundations course, to change a font you
must actually create a new font, identical to the original, but containing your changes.
There are four steps to this process:

1. Create a dictionary the same size as the original font dictionary.

2. Copy everything from the original font into the new dictionary. (In PostScript Level 1,
you must omit copying the /FID entry; we’ll ignore that here and assume we have a
PostScript Level 2 or 3 printer.)

3. Make our changes to the new dictionary.

4. Turn the dictionary into a font dictionary with definefont.

Let’s see how we change our Helvetica.
Next Page ->

Acumen Journal: PostScript Tech

Overriding Character Widths - Page 3

H e l v e t i c a - F i x e d

Changing Helvetica Here is the PostScript code for our fixed-pitch Helvetica; the new font is called
Helvetica-Fixed. (A descriptive name, if not imaginative.)

This PostScript file is on the Acumen Training website’s Resources page.

/Helvetica findfont % Get the Helvetica font dictionary

dup length dict begin % Create a new dict the same length…

currentdict copy % …and copy Helvetica’s k-v pairs into it.

/Metrics % Create our Metrics dictionary

CharStrings dup length dict begin % Copy all CharString’s keys…

{ pop 1000 def } forall % …into the new dict, with a value of 1000.

currentdict end

def

/Helvetica-Fixed currentdict definefont pop % Turn this dict into a font

end

/Helvetica-Fixed 36 selectfont

0 0 moveto

(Helvetica-Fixed) show

showpage

Next Page ->

Acumen Journal: PostScript Tech

Overriding Character Widths - Page 4

http://www.acumentraining.com/resources.html

Step by Step Let’s examine this PostScript code in detail.

Create the new dictionary /Helvetica findfont
dup length dict begin

We fetch the Helvetica font dictionary, make a copy for later with dup, create a dictionary
the same length as Helvetica, and move it to the dictionary stack with begin. Note that
this leaves a copy of the Helvetica font dictionary still on the stack.

Copy Helvetica into the
new dictionary currentdict copy

We copy the contents of Helvetica (still on the operand stack) into our new dictionary.
(Note that currentdict returns a pointer to our new dictionary, since that dictionary
resides on top of the dictionary stack.)

Create the Metrics dictionary We want to create a Metrics dictionary with one key-value pair for each character name
in the Helvetica font. The best source for all of the character names in Helvetica is the
font’s CharStrings dictionary.

As you recall from your PostScript class (or from reading July’s Acumen Journal), the
CharStrings dictionary associates character names with the drawing instructions for
each character.

Next Page ->

Acumen Journal: PostScript Tech

Overriding Character Widths - Page 5

http://www.acumentraining.com/AcumenJournal.html

In making our Metrics dictionary, we shall use forall to get each key-value pair out of
CharStrings, discard the value (a string full of Type 1 drawing instructions), and
replace it with the character width 1000 in our new dictionary

/Metrics

Put the name /Metrics on the operand stack.

CharStrings dup length dict begin

Make a new dictionary the same size as CharStrings and move it to the dictionary
stack. Note the dup; we will still have a copy of CharStrings on the stack at the end of
this line

{ pop 1000 def } forall

Iterate through CharStrings, discarding the original value associated with each character
name and replacing it, in our Metrics dictionary, with the number 1000.

currentdict end
def

Copy our new dictionary from the dictionary stack to the operand stack, remove it from
the dictionary stack, and def it as a key-value pair with the name Metrics.

Next Page ->

Acumen Journal: PostScript Tech

Overriding Character Widths - Page 6

Create the font /Helvetica-Fixed currentdict definefont pop

We turn our dictionary into a font dictionary using the definefont operator.

/FontName <<dict>> definefont => <<fontdict>>

Definefont converts a dictionary into a font dictionary with the specified name. It returns
a copy of the newly-minted font dictionary. In our case, we discard the return value.

Clean up end

Finally, we remove the dictionary (now a font dictionary) from the dictionary stack.

Use the font /Helvetica-Fixed 36 selectfont
0 0 moveto
(Helvetica-Fixed) show

Use the font like any other.

Next Page ->

Acumen Journal: PostScript Tech

Overriding Character Widths - Page 7

A Couple of Notes Creating and using a Metrics dictionary is pretty straightforward stuff, once you know it
exists. There are just a couple of caveats:

Not with Distill 5 Distiller 5 doesn’t honor the character widths in a font’s Metrics dictionary. Our sample
program will print the text using standard Helvetica character widths.

Distiller 4 and Global Solutions’ PDF Creator interpret the program correctly.

Appearance Tweaking Our Helvetica-Fixed left justifies each character within a 1000-unit space. If this looks
bad to you, you can specify an appropriate sidebearing for each character. The forall
loop in our program would become something like:

{ pop [200 1000] } forall

I’m not sure that this would look better; Helvetica wasn’t designed to be fixed pitch.

Alternatives Finally, if you need to override character metrics for the printing of only a single string,
there are two PostScript operators (added in Level 2) that are more efficient for that
purpose. The xshow and xyshow operators take a string and an array of character
widths — i.e., offsets from one character to the next — for each character in the
string. The operators print the string, using the character widths provided in the array.

These are well documented in the PostScript Language Reference Manual.
Return to Main Menu

Acumen Journal: PostScript Tech

Overriding Character Widths - Page 8

Schedule of Classes, Oct 2001 - Dec 2001
Following are the dates and locations of Acumen Training’s PostScript and Acrobat classes.
Clicking on a class name below will take you to the description of that class on the
Acumen training website. (September has been completely consumed by on-site classes,
so there are no Orange County classes this month.)

The PostScript classes are taught in Orange County, California.

PostScript Classes
PostScript Foundations Orange Co., CA October 15 - 19 Orange Co., CA December 10 - 14

Advanced PostScript Orange Co., CA November 5 - 9

PostScript for Support
Engineers Orange Co., CA October 29 - November 2

Jaws Development Orange Co., CA November 27 - 30

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration �

Acrobat Classes �

Acumen Journal: Class Schedule

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule
Acumen training teaches three users’ classes in Adobe Acrobat (the links below will
take you to the Acumen website’s complete description). These are all taught with
Acrobat 5, although Acrobat 4 versions may be taught if this is what your site uses.

Acrobat Essentials This class teaches the student how to make perfect PDF files. It includes complete
coverage of the meaning and proper settings of all of the Distiller Job Options.

Interactive Acrobat Here we show you how to add bookmarks, links, buttons, sounds, movies, form fields,
and other interactive features to an Acrobat file.

Troubleshooting with
Enfocus’ PitStop This class shows the student how to use all of the capabilities of this popular editing

and preflight software.

On-site Only The Acrobat classes are taught only on corporate sites. If you have an interest in any
of these classes for your group, please see the Acumen Training website regarding
arranging an on-site class.

Back to PostScript Classes

Return to First Page

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact us any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

See you at
Seybold SF If you find yourself attending the Seybold conference this month, come by and say “Hi.”

I’ll be teaching three sessions among the “tutorials”:

PDF for Prepress

Creating Acrobat Forms

Creating and Fixing PostScript Files.

You can get information about the Seybold seminars and trade show by clicking here.

Return to First Page

Acumen Journal: What’s New

What’s New?

http://www.key3media.com/seyboldseminars/sf2001/

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, we are looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Did you like it, hate it, or did it make you want
to eat brussels sprouts? How could we make it better? Do you like the PDF format?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like us to address?

Questions and Answers. We are planning a Q&A section for future issues. Do you
have any questions about Acrobat, PDF or PostScript?

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Enfocus PitStop Action List Control Panel - Executing Tab

Acumen Journal

Enfocus PitStop Action List Control Panel - Managing Tab

Acumen Journal

PitStop Action List Editor

Acumen Journal

PitStop Action List Editor

Acumen Journal

Adding an Action to the Action List

	btnHome:
	btnPrev:
	btnNext:

