
–1–

try {
	 gStatement.nextRow()
	 var row = gStatement.getRow()
	 PopulateFields(row)
	 PostMessage("")
}

var gHelpText = [

	 “What’s your full name?”,

	 “Where do you live?”,

	 “What is it you’re hoping to do here?”,

switch (itemPicked) {

	 case "See close-up":

		 this.pageNum = 2

		 break

	 case "About the artist":

		 this.pageNum = 6

		 break
if (pwd == "axolotl") {

	 this.submitForm("http://www.langerhans.com/submit.js", false, true)

	 app.beep()

	 app.alert("Your order has been submitted.")

}

else {

	 if (pwd != null)

		 app.alert("That is not the password!\n\n

				 ¬		 (Hint: it’s a small, rather repulsive amphibian.)")

}

var orderInfoTemplate = this.getTemplate(“tptMovieInfo”)

var addressTemplate = this.getTemplate(“tptAddress”)

var re7Digits = /^(\d{3})(\d{4})$/

var re10Digits = /^(\d{3})(\d{3})(\d{4})$/

if (re7Digits.test(event.value))

	 event.value = RegExp.$1 + "-" + RegExp.$2

else if (re10Digits.test(event.value))

This is your
Free Sample

To convince you that this book is just what
you need for your Acrobat forms, this

pdf file, containing the first two chapters,
and the corresponding sample files are

provided to you absolutely free!
Scan the table of contents; read the two
chapters. Then buy the book, already.

Right here.

Beginning
JavaScript
for
Adobe Acrobat®

John Deubert

A non-programmer’s guide

Quality Electronic Documentation
GuidesDEQ

from Acumen Training

http://www.acumentraining.com/qedguides/BuyTheBook_Redirect.html

DEQ

–i–

Dedication

For (in order of descending height) Barbara, Elizabeth, Gigi, and Julia.

Beginning JavaScript for Adobe Acrobat
John Deubert
Copyright © 2012 John Deubert

ISBN-13: 978-0-9850512-0-4
ISBN-10: 0-985-05120-5

version 1.0 (Sample)

To report errors, send a note to errata@acumentraining.com

Notice of Rights

All rights reserved. This book may not be redistributed to another computer.

Notice of Liability

The information in this book is distributed “as is,” without warranty. While every precaution has been taken
in the preparation of the book, the author shall not have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indireclty by the instructions contained in this
book or by the computer software and hardwre products described in it.

Trademarks

Trademarks are used throughout this book. Rather than put a trademark symbol in every occurrence of a
trademarked name, we state that we are using the names in an editorial fashion only and to the benefit of the
trasdemark owner with no intention of infringement of th trademark.

Adobe Acrobat is a trademark of Adobe Systems Incorporated.

DEQ

–ii–

Table of Contents

0	 Introduction	 iii
In which we point you to the sample files and thank you for buying the book

1	 Welcome to JavaScript	 1
In which we look over the book and establish some ground rules

2	 Page and Document JavaScripts	 15
In which we learn the basics of creating and editing JavaScripts in Acrobat.

3	 Form Field Highlighting	 22
In which we learn about JavaScript variables and the On Focus and On Blur events.

4	 Checking Acrobat Version	 26
In which we learn about the if & else commands and how to display an alert.

5	 Calculating Form Fields	 31
In which we learn how to make a form field calculate its own value.

6	 Auto-Entering Form Data	 43
In which we learn how to use arrays and automatically set a field’s value.

7	 Roll-Over Help	 49
In which we learn how to present help text to the user.

8	 Dynamic Form Fields	 56
In which we learn how to make fields appear and disappear.

9	 Dynamic Controls with Templates	 67
In which we learn how to use templates to make entire pages appear dynamically.

10	 Keystroke Checking with Regular Expressions	 75
In which we learn how to use regular expressions to efficiently examine text.

11	 Field Validation with Regular Expressions	 82
In which we use regular expressions to validate user’s text input.

12	 Formatting Text Fields with Regular Expressions	 92
In which we use regular expressions to automatically re-format user’s text input.

13	 Alerts and Dialog Boxes	 98
In which we learn to display messages to the user.

14	 JavaScript Functions	 107
In which we learn to assign a name to frequently-used pieces of JavaScript code.

15	 Creating Pop-up Menus 	 118
In which we learn to create pop-up menus in your forms.

16	 Blinking Buttons, Spinning Stars, and Other Simple Animation	 131
In which we learn to create animated doo-dads on your pdf pages.

17	 Interacting with Databases 	 141
In which we learn the basics of sql and how Acrobat works with databases.

18	 Reading and Writing a Database	 154
In which we learn to load our form fields’ contents from a database.

19	 Where to Go from Here	 173
In which we list some other sources of JavaScript learnin’.

Only the links to the first two chapters
work in this sampler.

DEQ

–iii–

Chapter 0
Introduction

Welcome to Acrobat JavaScript.

You are about to open a new chapter in your work with Acrobat forms. In reading this book, you will learn
how to add features and abilities to your forms that are not otherwise possible: roll-over help, automatic text
field formatting, database connectivity, and more will all become routine parts of your form design. You will
also learn a programming language, perhaps your first: JavaScript. Even if you’ve never had a hankering to
write software and sling code, you’ll find JavaScript an important arrow in your quiver; it’s supremely useful,
relatively easy, and surprisingly fun.

Of course, you don’t need JavaScript skill to create an Acrobat form; you’ve no doubt been doing perfectly
well for quite some time without it. However, a knowledge of JavaScript adds immeasurably to your ability
to make your forms look and behave exactly as you want. JavaScript will open to you a world of possibility
whose scope is hard to overstate. Sufficient to say that the knowledge and techniques you will learn in this
book will allow your forms to take on a sophistication that is otherwise completely impossible.

If this sounds like hyperbole, think again. It’s true.

This Book

What this book is

This e-book is a non-programmer’s guide to the JavaScript programming language as used in Adobe Acrobat;
it teaches you, step-by-step, how to add specific features to your Acrobat forms and, in so doing, teaches you
about the JavaScript language.

If you are an experienced Acrobat form designer, but have never written a line of programming code in your
life (and pretty much wanted to keep it that way), then this book is written for you. Together we’ll explore
programming concepts while learning how to add features to your Acrobat forms: we discuss arrays while
creating a dynamic list of prices; we talk about case statements while creating a pop-up menu; we teach a
form to check the version of Acrobat on which it’s running and, along the way, talk about if–else constructs.

When you’re done with the book, you will be in good shape to read more formal books on JavaScript and to
make use of Adobe’s technical specification of Acrobat JavaScript.

DEQ About the Book

–iv–

What this book isn’t

This book is not a complete reference to the JavaScript language or to using JavaScript in Acrobat. JavaScript
is a broad and deep language and is capable of much that we don’t discuss here.

The purpose of this book is to bootstrap you to a point where you can learn the rest of the language’s
abilities on your own; it assumes you are an experienced Acrobat forms designer, but have little or no
experience with computer programming languages. If you are already comfortable with Objective C, Java, or
other programming language, this book will be paced too slowly for you; you should go directly to Adobe’s
Acrobat JavaScript Object Specification.

Also, this book does not teach you how to make form fields and other components of Acrobat forms;
I assume you have reasonable experience with the mechanics of designing and creating forms.

Mac or Windows?

With one exception the examples in this book will work with either the Macintosh or Windows version of
Adobe Acrobat. The exception is the pair of chapters on Acrobat database connectivity, which is available
only in Windows. Otherwise, the Mac and Windows versions of Acrobat work identically, except for minor
differences dialog box labelling, etc. Illustrations in this book are taken from both versions of Acrobat.

How to use this book
The first two chapters of this book present basic information and terminology and must be read before
attempting the rest. The remaining chapters are probably best read in order, since learning a programming
language is inevitably a cumulative activity. Nonetheless, Chapters 3-19 are designed so that one can usefully
read them in any order; if you need to add roll-over help to a form, feel free to skip to Chapter 7 and see
how to do it. Just don’t be surprised if you find yourself having to go back to earlier chapters to clarify
references to mysterious terminology.

Some chapters need to be read in order; for example, the discussion of regular expressions is spread across
Chapters 10, 11, and 12 and they must be read in that order to be sensible at all. Most chapters, however, are
intended to be semi-independent.

All of the chapters, however, assume you have read Chapters 1 and 2.

http://livedocs.adobe.com/acrobat_sdk/9.1/Acrobat9_1_HTMLHelp/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat9_HTMLHelp&file=JavaScript_SectionPage.70.1.html

DEQ About the Book

–v–

Reading the book on-screen

Being an e-book, Beginning JavaScript for Adobe Acrobat is distributed electronically; its pages are designed
to be easily read on-screen. Since it’s distributed as a self-contained pdf file, you can read the book on nearly
any computer or tablet. It turns out that the page size works particularly well on a 768x1024 screen, such as
that of the iPad; that’s probably a coincidence.

The pdf file has been “enabled” for commenting in Adobe Reader, so you should be able to make notes to
yourself on the pages in either the full Acrobat or Reader.

URL links within the book are all “live” and will open the appropriate page in your default web browser.

Printing the book

Many people (myself included) prefer to read technical tutorials on paper. To that end, feel free to print
Beginning JavaScript; it works very well printed two-up and double-sided (Figure 0.1).

Sharing the book

I’d rather you didn’t, really. Beginning JavaScipt is reasonably priced and I’m hoping to write additional books
on this and other topics. However, I do need to be able to make at least a minimal living at it. So, if your
friends or colleagues want to read the book, encourage them to buy their very own copy. They’ll feel good
about themselves.

Registering the book

E-books are similar to software; in particular, it is possible for an author to update an e-book, improving
explanations, fixing the grammar, killing typos, and eliminating flat-out errors. (This particular e-book, of
course, has neither errors nor tpyos.)

If you register your book purchase (go to www.acumentraining.com/qedguides/qedregister.html), you’ll be
notified whenever there is a new update for your book. It’s worth doing.

Figure 0.1 This book’s page size works well printed two-up on A4 or
American Letter-size paper.

www.acumentraining.com/qedguides/qedregister.html

DEQ About the Book

–vi–

Online Resources
There are two sources of information that are specifically intended to be used with this book.

Sample Files and Support

Each chapter in this book is built around one or two sample forms to which we add JavaScripts to complete the
chapter’s goals. Each sample form has two files associated with it:

■	 The complete, functioning form, with all JavaScripts in place. This shows you how the form is supposed to
behave and allows you to inspect the chapter’s JavaScripts in place. This version of the form has a filename
ending with “end.”

■	 A version of the form with all form fields and other elements in place, but no JavaScripts attached. Use
this version if you want to follow along while reading the chapter, writing, debugging, and executing the
JavaScripts as you go. The file for this version of the form will have a name ending in “start.”

The sample form files are available for downloading at www.acumentraining.com/qedguides/acrojs.html. This
web page is also where you will find errata, update information, and other useful information.

Acumen Journal

The Acumen Journal (Figure 0.2) is a free periodical that I produce three or four times per year. Each issue has
an article on advanced Acrobat usage and many of these are about JavaScript. The back issues make a good
supplemental to the topics in this book; there are more than 60 issues accumulated since I began writing the
Journal back in 2000. You can download them at www.acumentraining.com/acumenjournal.html.

If you wish to be notified when a new issue of the Journal comes out, there is a link on the Acumen Journal
web page to an appropriate form.

Thank You
Finally, thank you for buying this book or looking at the sample chapters. Either way, you are participating in
an ongoing experiment in publishing.

Figure 0.2 Each issue of the Acumen Journal has an Acrobat-related article; many of
these are about JavaScript usage.

http://www.acumentraining.com/acumenjournal.html

DEQ

–1–

Chapter 1
Welcome to JavaScript

Life is full of threshold phenomena.

Periodically in life, you learn something that broadens your world immeasurably, revealing an expanse of
new experience, problems, opportunities, play, and work. Whole worlds that had invisibly surrounded
you suddenly appear, providing a new space to explore. Reading, sex, driving, children, all bring with them
concerns, interests, and interactions that had been previously inaccessible and unsuspected.

In its own small way, learning JavaScript will be just such a threshold event in your professional life. If you’ve
been working with Acrobat for any length of time, you’ve probably gotten pretty good at it and have
become quite comfortable at creating forms, adding music, creating slide shows, and all the other features
Acrobat offers.

This book introduces the New World. A knowledge of JavaScript allows you to do things within Acrobat that
far exceed what you’ve done so far: You can interface with databases; add your own pop-up menus; create
forms with sophisticated, interactive interfaces; and implement form fields that can look up prices and other
data. These are only a few of the things you can do within your Acrobat documents using JavaScript. The
extent to which you can manipulate your Acrobat files is vastly greater with JavaScript skills than without.

Hence, this book.

Here you will learn how to accomplish a variety of useful tasks in Acrobat using JavaScript. Along the way, you
will learn a great deal about JavaScript, programming, and Adobe Acrobat.

What You Should Know Already

This book assumes you have reasonably extensive experience in working with Acrobat and creating Acrobat
forms. In particular, I assume you know how to create forms in Acrobat; you should be able to create a form
field, set its properties, and assign actions to it. If you feel vaguely uneasy about any of these tasks, you may
want to run right off and buy a book on the subject (see the sidebar on the next page).

Beyond that, this book does not assume any knowledge of programming; you will learn the programming
skills you need as we proceed through our examples.

Again, this book is intended for programming novices; if you are an experienced programmer, you may it to
be paced slower than you’d like. Experienced programmers may do better to just go to a more-advanced

In this chapter, we’ll learn:

■	 What’s a JavaScript?

■	 Types of JavaScript

■	 Attaching a JavaScript to a form field

■	 JavaScript objects, data types, and syntax

■	 JavaScript errors and the debugger

■	 How to use your own text editor with Acrobat
JavaScripts

What We’ll Learn in this Chapter

DEQ 1. Welcome to JavaScript

–2–

book to learn JavaScript (there are myriad such books, though they all teach JavaScript in the context of web
pages) and then look at Adobe’s JavaScript reference site to see how to apply it to Acrobat.

What Version of Acrobat Should You Have?

Although this e-book presumes you are working with Acrobat X, the current version, the instructions we
step through will nearly all apply to Acrobat 9, as well. Where there is a large difference between the two
versions, I’ll provide a note on what you should do in Acrobat 9.

What Is JavaScript?
JavaScript is a programming language. The term “programming language” often induces jitters in newcomers,
but, conceptually, it’s not very scary: A programming language is a language that is used to describe the
steps involved in carrying out some task. In Acrobat, these tasks include moving to a particular page of a
document, sending data to a database, and calculating a form field value. Carrying out the steps described
by a JavaScript is referred to as executing the program.

As a programming language, JavaScript’s most significant characteristic is that it’s simple enough that many applications
use it as their native scripting language. Web browsers can all interpret JavaScripts embedded in Web pages,
and, particular to our topic, Acrobat can execute JavaScripts attached to form fields, pages, and pdf files.

Like any language, JavaScript has its own vocabulary (words that have meaning) and syntax (rules by which
you make statements with those words). Learning JavaScript, therefore, has much in common with learning a
human language, such as Spanish or German, only it’s much easier. JavaScript is vastly simpler than any human
language: there are no metaphors, no literally nonsensical idioms, no synonyms, no subtle shades of meaning.
Just very precise statements telling Acrobat to do something very specific.

JavaScript in Acrobat

Acrobat allows you to create four different kinds of JavaScripts:

■	 Form Field JavaScripts are attached to form fields. Acrobat executes the script when a particular event
occurs in that form field, such as a button click. Most JavaScripts in Acrobat are attached to form fields.

■	 Page JavaScripts are executed when the user moves to or leaves a particular page in the Acrobat document.

■	 Document JavaScripts are executed when the Acrobat Document opens.

■	 Document Action JavaScripts are executed user opens, closes, saves, or prints a document.

Although there are a number of books that will teach you how
to create Acrobat forms., most of them are out of print. The only
extant book is:

•	 PDF Forms Using Acrobat and LiveCycle Designer Bible
Ted Padova and Angie Okamoto

	 Ted Padova is the king of the “Bible” style books and this
volume shows why.

There are other books specific to Acrobat forms that, though
out of print, are still available if you look around. In particular, my
own old book is still available, though it’s getting pretty long in
the tooth, I must admit:

•	 Creating Forms in Adobe Acrobat – John Deubert

Finally, any reasonably complete book on Adobe Acrobat will
have at least a chapter or two on creating forms. This includes my
own book:

•	 Adobe Acrobat X: Visual Quickstart Guide – John Deubert

•	 Acrobat X Classroom in a Book – Adobe Creative Team

•	 Acrobat X PDF Bible – Ted Padova

These are all available through Amazon.com, as is pretty much
everything in the world.

Books on Acrobat Forms

DEQ 1. Welcome to JavaScript

–3–

We shall talk about Page, Document, and Document Action JavaScripts in Chapter 2. For now, let’s look at
how you type in and use a Form Field JavaScript.

Our First JavaScript
Let’s start exploring our new world by adding a simple JavaScript to the button in Figure 1.1.

This form consists of a set of flash cards that are intended to be printed double-sided and then used to quiz
students on vocabulary terms. Our pdf file has only a few flash cards; each card has a button that takes users
to an order form they can use to purchase the complete set of cards. We are going to add a JavaScript to
the Order Form button that takes the user to the order form, located on the last page of the Acrobat file
(Figure 1.2).

As will be true throughout this book, there are two versions of this form on the JavaScript for Acrobat web page:

■	 JSAcro_Ch01_Example_Final.pdf is the full form, complete with all relevant JavaScripts.

■	 JSAcro_Ch01_Example_Start.pdf, the “raw” version, lacks the chapter’s JavaScripts so that you may type in
the JavaScript yourself if you wish.

These are available at www.acumentraining.com/qedguides/acrojs.html.

Figure 1.1 We’re going to add a JavaScript to the “Order
Form” button in this form.

Figure 1.2 The Order Form button’s JavaScript will move
the user to the pdf file’s final page, which is the order form.

Remember that all of the sample files in this eBook are available
at www.acumentraining.com/qedguides/acrojs.html.

Where Do the Sample Files Live?

www.acumentraining.com/qedguides/acrojs.html
www.acumentraining.com/qedguides/acrojs.html

DEQ 1. Welcome to JavaScript

–4–

Attaching a JavaScript to a Form Field

As a reminder of something you may already know, let’s step through the process of attaching a JavaScript to
a button, in this case our Order Form button.

To attach a JavaScript to a button:

Start with the form open in Adobe Acrobat and the Tools
pane exposed.

1	 In the Tools pane’s Forms panel, click on the Edit tool
(Figure 1.3).

Acrobat will enter Form Editor mode, displaying all of the
form fields on the current page as a set of rectangles and replacing the usual three Tasks panes with
a single Forms pane (Figure 1.4). Note in the figure that our form has only one field on its first page, a
pushbutton field with the name btnOrderForm.

2	 Double-click the Order Form button.

Acrobat will present you with the Field Properties dialog box (Figure 1.5).

3	 Click on the Actions tab.

You will now be looking at the set of controls that specify what
should happen when you click on this button (Figure 1.6).

4	 In the Select Trigger pop-up menu, select Mouse Up.

This tells Acrobat that this button’s action should trigger when
the mouse button is released after clicking in the button. (See
the sidebar, at right.)

5	 In the Select Action pop-up menu, select Run a JavaScript and
then click the Add button.

Acrobat will present you with the JavaScript Editor, a dialog
box with a simple text editor (Figure 1.7 , next page). This is
where you type in the JavaScript that should be associated with the Order Form button.

Figure 1.3 Enter Form Editor mode by
clicking the Edit button in the Forms
panel.

Figure 1.4 Acrobat’s Form Editor mode gives you a Forms pane, new
toolbars, and presents each form field as a rectangle with handles..

Figure 1.5 Double-clicking on the button yields the Button
Properties dialog box.

Figure 1.6 The Actions tab of the Button Properties dialog box is where
we specify what should happen when the user clicks our button.

Note
Acrobat 9 doesn’t have a Tools pane, but

it does have a Forms menu. To get to the Form
Editor, select Forms > Add or Edit Fields. Having
done this, you can follow the steps exactly as listed.

x

DEQ 1. Welcome to JavaScript

–5–

6	 Type your JavaScript into the text field of this dialog box.

In the case of our order form, the JavaScript is a two-line
program that moves the user’s view of the document to
the page containing the order form and then causes the
user’s computer to beep:

	 this.pageNum = 6
	 app.beep

Type these lines into the text-editing field exactly as
above, making sure to match upper and lowercase. The
first line of code says, “In this document, set the current
page number to 6.” The second line tells the Acrobat
application to beep.

7	 Click the ok button of the JavaScript Editor and the Close
button of the Field Properties dialog box to return to the
Acrobat form.

You are now looking at the Acrobat flash card page with
the Form tool still selected, as in Figure 1.4.

8	 Exit the Form Editor by clicking the Close Form Editing
button in the Forms pane (Figure 1.8).

You are now back where you started, looking at your
document page.

So, now try it out. Click the Order Form button, and Acrobat
will move to the order form page and then beep.

JavaScript Objects
Our two-line JavaScript makes use of two JavaScript objects. A JavaScript object is the representation of some
piece of data within your JavaScript program. Before your program can manipulate or examine a form field, it
must first create an object that represents that field. Most of the things you can manipulate in JavaScript (pages,
signatures, database connections, and so on) are represented in your program as objects.

In our sample program, this refers to a Doc object. A Doc object represents an open Acrobat file to your
JavaScript program; you use this object to change pages, save the document, and otherwise manipulate the

Figure 1.7 The JavaScript Editor window is a simple text editor that you
will use to type in your JavaScripts.

The Select Trigger pop-up menu, shown in Figure
1.6, offers six form field events to which you can
attach an action:

■	 Mouse Down occurs when the user presses the
mouse button with the pointer in the form field.

■	 Mouse Up occurs when the user clicks on the
field and then releases the mouse button with
the mouse pointer still in the field.

■	 Mouse Enter occurs when the mouse pointer
first rolls over the form field.

■	 Mouse Exit occurs when the mouse pointer rolls
out of the form field.

■	 On Focus occurs when the user clicks on or tabs
into the form field, so that it becomes the target
for keyboard or other input.

■	 On Blur occurs when the user tabs out of a form
field or clicks on some other form field, so that
our field is no longer the target for user input.
(Blur is the opposite of Focus, of course.)

The Field Properties dialog box, Figure 1.6, lets you
associate one or more Actions (a JavaScript action,
in our case) with any of these events.

Form Field Events

Figure 1.8 You exit the
Form Editor by clicking
Close Form Editing in
the Forms pane.

DEQ 1. Welcome to JavaScript

–6–

document from within your program. The word this in our sample JavaScript refers particularly to the Acrobat
document in which our JavaScript resides (the Flash Cards file, in our case); think of it as short for this document.

The word app is an App object, a reference to the Acrobat application being used to view the current
document. You use an App object to tell the Acrobat application to do something: open a file, put up an
alert dialog box, or, in our case, beep.

Commonly used JavaScript object types include:

■	 Annot represents an annotation (for example, a “sticky note”) in the current document.

■	 App represents the Acrobat application being used to view the current document.

■	 Connection represents a connection to an external database.

■	 Doc represents an open Acrobat document.

■	 Field represents a form field.

■	 Sound represents a sound embedded in the current document.

Object properties

JavaScript objects are analogous to physical objects in the world around us, such as books, vases, and dogs.
Every real-world object possesses a set of characteristics that define it (such as, for a dog, color, tail length,
and number of fleas).

The characteristics of a JavaScript object are referred to as that object’s properties. These are elements of an
object that our JavaScript programs can examine and change as needed. Each type of object has a set of
properties that characterize it; for example, Doc objects have, among other things, a title, a current page
number, an author, and a number of pages (see Table 1.1).

Property	 Data Type	 Description

author	 String	 The person who wrote the document

fileSize	 Integer	 The size of the PDF file, in bytes

numPages	 Integer	 The number of pages in the document

pageNum	 Integer	 The page number currently visible to the user

title	 String	 The name of the document.

Table 1.1 Document Object Properties (Partial)

The Data Type column of Table 1.1 lists the type of information
associated with each of the properties it lists. Computer
programming, including JavaScript, uses special terms to precisely
describe types of data. Here are the terms commonly used in
JavaScript:

■	 Integer is a whole number, such as 1, 2, 87, or -6293.

■	 Floating Point is a number with a fractional part, such as 1.7,
-842.9011, 1024.0. Note that the fractional part may be zero, as
in 1024.0; in this case, the floating point number has the same
value as an integer, though internally it is still a floating point
number. Floating point numbers are often referred to as “floats.”

■	 Boolean is an entity that can have two values: true or false.
Boolean data are used to describe characteristics that can
have only two states. (For example, the spayed property in
our dog object is a Boolean value; a dog either is or isn’t.)

■	 String is text, that is, a “string of characters.”

Data Types

DEQ 1. Welcome to JavaScript

–7–

The phrase this.pageNum addresses the pageNum property of the Document object; this property is the
page number the document is currently displaying to the user. Our program moves the user to the order
form page by setting the current document’s pageNum property to the order form’s page number:

this.pageNum = 6

Some observations about this page number assignment:

■	 You address the property of an object by naming both the object and the property, joined by a period:

object-name.property-name

■	 The equal sign in the line of code above is an assignment command; it sets the value of something. In our
case, it sets the current document’s page number to 6.

■	 JavaScript is case-sensitive. Upper- and lowercases are distinct; our program would have failed if we had
typed This.PageNum.

■	 Acrobat internally numbers a document’s pages starting at zero; the seven pages in our Acrobat file are
numbered zero through six. Thus, when our JavaScript set the pageNum property to 6, it was moving us to
the last page in the document.

Object methods

A method is a command that is associated with a JavaScript object. Just as a dog can be given commands
(“Sit,” “Heel,” “Spit that out this instant!”), JavaScript objects have commands that they can carry out. The set of
commands is different for each type of object. For example, Table 1.2 lists some of the commands the app
object knows how to execute.

Method	 Arguments	 Description

beep			 Play the system’s “beep” sound

alert	 String	 Put up an alert dialog box with the specified text

goBack			 Go to the previous view

goForward			 Go to the next view

newDoc			 Open a new, blank Acrobat document

openDoc	 String	 Open an Acrobat file. The string argument
contains the name of the file

Table 1.2 App Object Methods

Here are three closely related terms that we’ll be using
throughout this book.

■	 A program is a general term for a series of instructions that
tell a computer in detail how to carry out a particular task. In
general, a program is a stand-alone set of instructions, such as
an application.

■	 A script is a program that is intended to manipulate and run
within another program. JavaScript is a scripting language,
because you use it to control the behavior of another
program, such as Acrobat or FireFox.

■	 Code is the term applied to the set of instructions that
make up a program. Your JavaScript program is made up of
JavaScript code.

“Program” vs. “Script” vs. “Code”

DEQ 1. Welcome to JavaScript

–8–

In our Order Form JavaScript, we executed (“called”) the app object’s beep method:

app.beep

Note that we call an object’s method in the same way that we refer to one of its properties: the object name,
a “dot,” and the method name.

Arguments and Return Values

Some methods need additional information in order to carry out their task; for example, the openDoc
method listed in Table 1.2 needs to know the name of the file you want to open. Information handed to a
method is called an argument to that method. The openDoc method takes a filename as its argument; this
information, surrounded by parentheses, must follow the method name. An invocation of openDoc looks
something like this:

app.openDoc("TermPaper.pdf")

The above JavaScript statement would open an Acrobat file named TermPaper.pdf.

Sometimes when you give a dog a command, you expect the dog to give you something back: the command,
“Fetch the stick, boy!” should yield a stick in your hand (along with some gratuitous drool). Similarly, many
JavaScript methods have a return value, some piece of data they give back to the JavaScript program.
The openDoc method we invoked above actually returns a Doc object representing the newly opened
document, though our single-line use of openDoc just ignores it. We shall look at return values in much more
detail in the next chapter.

Named Arguments

Generally, you must supply arguments to a method in a certain order; the app object’s alert method, which
we’ll talk about in detail in the next chapter, wants a string and an icon code:

app.alert("Woah! Somethin' weird just happened!",2)

The string and the integer must be supplied in that order so that JavaScript can identify them.

However, you can also pass arguments to a method by name. The Acrobat JavaScript Guide (described at the
end of this chapter) defines a name associated with each of the arguments a method requires; in the case of
app.alert, the names are cMsg and nIcon.

You can supply these arguments, in any order, using the following call to the method:

DEQ 1. Welcome to JavaScript

–9–

app.alert({cIcon: 2, cMsg:"Woah! Somethin' weird just happened" })

Note that we have braces within the method’s parentheses and within those we have our method arguments.
Each argument is represented by the name of the argument, a colon, and then the argument’s value; the
arguments are separated by commas.

This is not as concise as passing the arguments by position, but it is clearer as to the purpose of each of the
arguments. (Our first call to app.alert, for example, gives no clue to the purpose of the 2.) Also, passing
arguments by name give you great flexibility in formatting your code. In particular, you can place line breaks
within the argument list and supply the arguments in any order; our previous example could have been written

app.alert({	cIcon: 2,
			 cMsg: "Woah! Somethin' weird just happened" })

In this book, we shall pass arguments by position; we’ll use argument names only when it’s necessary—usually
for clarity—to a particular JavaScript example. I shall, however, supply the names of the arguments when
describing methods so that you can use them if you wish.

Usually, there’s no overwhelming reason to do so.

JavaScript Program Syntax
Here we must discuss a couple of short topics regarding how JavaScript commands are put together into a program.

JavaScript Statements

A JavaScript program—any computer program—consists of a series of statements, each of which carries out
one step in the overall task. Our sample program consists of two statements: a page assignment and a call to
the app object’s beep method.

this.pageNum = 6
app.beep

Usually, each line within a JavaScript program will contain a single JavaScript statement, as in our program. You
can put more than one statement on a line, separated by semicolons. Our two-line program could have been
written on a single line:

this.pageNum = 6; app.beep

DEQ 1. Welcome to JavaScript

–10–

Why would you do this? Purely for esthetics; some people just prefer to combine very simple statements
together. I recommend against this practice; most programs are much easier to read if you have only one
statement per line.

If you read other people’s JavaScripts, you may notice that many programmers put semicolons at the end of
every line in their program:

this.pageNum = 6;
app.beep;

This doesn’t hurt anything, but it’s unnecessary. Most of them do it out of habit; JavaScript looks very much
like the programming languages C and C++, both of which require that all statements end with semicolons.
You can leave out the semicolons.

JavaScript Text

JavaScript programs are simply text files; you can write them with any text editor or word processor and then
copy and paste them into the Acrobat JavaScript Editor dialog box. In fact, Acrobat lets you specify an external
editor that should be used for editing your JavaScripts; we’ll discuss how to do this at the end of the chapter.

By the way, space and tab characters within a JavaScript line have no particular meaning in JavaScript. You can
use them as you wish to format your program. This is a purely visual issue; you want to format your JavaScript
code so that it’s easy to read.

Use whitespace characters lavishly! Reading program code is tedious at best; a program can be nearly
undecipherable if the programmer has not formatted the code for easy reading. This is an important enough
issue that I shall be providing formatting tips for many of the JavaScript constructs we use in this book.

JavaScript Comments
JavaScript code can be pretty cryptic. Puzzling over someone else’s code (or even your own code from six
months ago), trying to figure out exactly what it’s trying to do, can be tedious. As a courtesy to others looking
at your code and as an aid to your future self, it is very important to place comments in your JavaScript code.

A JavaScript comment is text in your code that is ignored by the JavaScript “machine.” The purpose is to let
you place your own notes to be read by human beings examining the code.

DEQ 1. Welcome to JavaScript

–11–

JavaScript recognizes (that is, ignores) two kinds of comments:

■	 Single-line comments start with a double slash (//) and extend to the end of the current line in the
JavaScript code. These are intended for brief comments.

//This is a single-line comment.

■	 Block comments start with a /* and end with a */. Between these two delimiters can be as much text as
you wish, spread out over as many lines as you wish within the JavaScript file. Use this for longer comments.

/* Here we have a block comment.
This text will be completely ignored
until we end the comment, right here. */

An Example

Consider the following, uncommented JavaScript from later in this book:

var txtField = event.target
txtField.fillColor = color.red
txtField.textColor = color.white

Since we have not yet discussed these commands, exactly what the purpose of this script is and how it carries
out that purpose is very unclear, although it does seem to have something to do with color.

On the other hand, if we include comments in the code, then it becomes possible for someone unfamiliar
with the program to at least know what the intent of the program is and generally what it’s doing:

/* This program changes the background and text color of
 a text field when the user tabs into or clicks in the
 field. */
var txtField = event.target // Get a reference to the text field
txtField.fillColor = color.red // Set the background to red
txtField.textColor = color.white // Set the text color to white

This version of the program is much clearer, even to someone new to the code.

Comments are a Force for Good in programming. Any script more complex than a couple of lines should
include comments that describe what it does and how it works.

All of the examples in the rest of this book will be heavily commented to make them as comprehensible as possible.

You’re welcome.

DEQ 1. Welcome to JavaScript

–12–

JavaScript Errors
In the (ahem) rare event that you have an error in your JavaScript—you misspelled a variable name, mis-copied
a piece of code, and so on—you will be faced with the task of figuring out what is wrong with your code,
a process known as debugging. Acrobat left to itself treats these errors quietly; if the code fails, Acrobat
just aborts the script; to all appearances, clicking on the button did nothing at all, although there was really
a failed script happening beneath the hood. This isn’t useful for debugging; if a JavaScript fails, we’d like to
know about it and, furthermore, be told what went wrong, so we can fix it.

To get this diagnostic information about failed scripts, we need to enable something called the JavaScript Debugger.

The JavaScript Debugger

The JavaScript Debugger is a window that presents information about JavaScripts executing in your Acrobat
document (Figure 1.9). In particular, the Debugger presents diagnostic information about errors in your
JavaScripts, allowing you to figure out why they are misbehaving. The Debugger also provides a variety of
other tools useful in working with your scripts; we shall examine these tools in detail in a later chapter.

With the JavaScript Debugger enabled, whenever one of your JavaScripts fails, Acrobat will open the
Debugger with an error message (“ReferenceError,” in Figure 1.9). This will allow you to determine what went
wrong and what to do about it.

Error messages can be somewhat cryptic at first, but with time and familiarity they become useful. The most
common messages you are likely to see are the following:

■	 Reference Error: XXX is not defined

	 This indicates that you misspelled something; the name “xxx” (or whatever) is not one that JavaScript
knows. Remember that JavaScript is case-sensitive; there is a difference between app (which JavaScript
knows) and App (which it doesn’t know).

■	 Syntax Error

	 This means that JavaScript could not make sense of something in the code. This usually means you omitted
something (a comma, a number, a parenthesis) from your script. An example of a syntax error would be

	 app.alert("Hi, Mom", 3

	 This line is missing its closing parenthesis.

Figure 1.9 The JavaScript Debugger window presents information about errors in
your JavaScript, as well as providing a variety of other tools.

DEQ 1. Welcome to JavaScript

–13–

The set of possible error messages is very large, though most are pretty hard to provoke. Just sit tight, read
the message, and carefully examine the aberrant JavaScript code for misspellings and omissions.

Enabling the JavaScript Debugger

You enable the JavaScript debugger in the Preferences of your copy of Acrobat. Open your Acrobat
preferences and select JavaScript in the long list of preference categories (Figure 1.10). All of the checkboxes
in the JavaScript Debugger section should be selected, as in the figure.

Using Your Own Text Editor
The text editor built into Acrobat’s JavaScript Editor (see Figure 1.7) is pretty minimal. It lets you type in your
JavaScript, but it has no particularly fancy editing capabilities. For short JavaScripts, this is not important; when
typing long, complex scripts, however, you will miss having a fully featured text editor.

You can ask Acrobat to use text editing software of your choice to edit your JavaScripts. Having told Acrobat
what editor you want to use, it will automatically launch this software when you click on the Add or Edit
button in the Document JavaScripts dialog box (Figure 1.11).

To set this up, you must specify in Acrobat’s Preferences the editor you wish to use for working with JavaScripts.

To specify a text editor to use when editing JavaScripts:

Start with Acrobat open.

1	 On the Mac, select Acrobat>Preferences; on Windows, select Edit>Preferences.

Acrobat will present you with its Preferences dialog box (Figure 1.12, next page).

2	 Select JavaScript in the list of Preferences categories.

The Preferences dialog box will display the controls that affect Acrobat’s JavaScript support, as in Figure 1.12.

3	 Among the JavaScript Editor controls, at the bottom of the dialog box, select Use External JavaScript Editor.

4	 Click the Choose (Windows) or Browse (Mac) button and then navigate to the .exe or .app file for the
editor you want to use when editing JavaScripts.

5	 Click the ok button.

Figure 1.10 You enable the JavaScript debugger in your Acrobat preferences. Select
all of the checkboxes in the Debugger section, as above.

Figure 1.11 Acrobat will launch your external text editor whenever you click the Ad
or Edit button in the Document JavaScripts dialog box.

DEQ 1. Welcome to JavaScript

–14–

That’s all there is to it. Now, when you edit a JavaScript, Acrobat will automatically launch your text editor.
Type your JavaScript code into the text editor’s window, save the text, and then close the editor. Your
JavaScript will be automatically entered into Acrobat.

For what it’s worth, my favorite programmers’ editor on the Mac is TextWrangler (www.barebones.com); it
is a first-rate editor and completely free, omigawd. Among Windows text editors, I’m rather fond of TextPad
(www.textpad.com); it’s relatively inexpensive shareware and well worth the money.

Acrobat JavaScript Guide
This book is a non-programmer’s introduction to using JavaScript within Adobe Acrobat. The full description
of all of the things you can do with JavaScript in Acrobat is presented in a document available from Adobe’s
Developer website: the JavaScript for Acrobat API Reference or “JSAPI,” from now on (Figure 1.13). This is the
technical specification of all of the object types available to your JavaScript programs within Acrobat. There is
also an excellent on-line version available through Adobe’s Developer website.

The JSAPI is a technical specification, not a document you would willingly read from one end to the other. It gives
a detailed description of every JavaScript object type available in Acrobat and the properties and methods
of each. Where the book you are reading presents a series of
examples of how to carry out specific tasks in JavaScript, the JSAPI
describes everything you can do in Acrobat with JavaScript.

To give you a bit of the flavor of the JSAPI, Figure 1.14 shows
a screenshot of the complete description of the app object’s beep method. I shall be making occasional
references to the JSAPI throughout this book.

Figure 1.12 You can tell Acrobat to use an external editor when typing or modifying
JavaScript code.

Figure 1.14 The description of the app
object’s beep method is a good example

of the type of description provided for
every object., method, and property in the

JavaScript for Acrobat API Reference.

Figure 1.13 The JavaScript for Acrobat API Reference
is the formal technical document that lays out the
how Acrobat’s JavaScript implementation works.

Note
The JSAPI is available as a Kindle book from

amazon.com.

x

This is the end of your free sample.
Does the book look useful? Interesting?

Worth buying?
Then buy it here.

Otherwise, drop John a line and let him
know how you think the book could be

better.

http://www.textpad.com
http://livedocs.adobe.com/acrobat_sdk/9.1/Acrobat9_1_HTMLHelp/wwhelp/wwhimpl/js/html/wwhelp.htm?href=JS_API_AcroJS.88.1.html#1988641&accessible=true
http://www.acumentraining.com/qedguides/BuyTheBook_Redirect.html
mailto:qedguides%40acumentraining.com?subject=Comment%20on%20JavaScript%20sampler

