
Acumen Journal, Issue 48 © 2012 John Deubert, Acumen Training  Acumen Journal, Issue 66 © 2012 John Deubert, Acumen Training  

John Deubert’s Acumen Journal, November 2012

Table of Contents

The Acrobat User
Simple PDF Signatures Using flattenPages
The JavaScript Doc object's flattenPages methods converts annotations, form fields, and links to fixed artwork 
on the page. You can use this to implement a simple signature mechanism.

PostScript Tech
Variable-Argument Procedures in PostScript
Occasionally, you want a procedure to be able to take optional arguments, perhaps a boolean that defaults 
to true if you don't supply it yourself. This month we see how to do this.

Class Schedule
Jan-Feb-Mar

What’s New?
I’m working on some short, ePub- and Kindle-format e-books.
Cheap,  short books on Acrobat form design and additional JavaScript topics

 Contact John at Acumen Training
If you want to ask a question, sign up for a class, arrange an on-site, or arrange some contract program-
ming, here's where to do it: telephone number, email address, postal address. 

1.0

Creative Expertise in PostScript, Acrobat, and PDF

T
Acumen

raining
& Services

May I assume you’ve already bought a copy 
of Beginning JavaScript for Adobe Acrobat? 
If not, why not? Cheap, easy, fun, and your 
Folks will admire you for it!

http://www.acumentraining.com/QEDGuides


Acumen Journal: PostScript Tech  2

PostScript Tech

Variable-Argument Procedures in PostScript
Many programming languages allow you to specify default values for a function’s arguments so that they may 
be omitted when you call the function. C and C++ let you specify a function protoype such as:

void voteNow(int candidate, bool holdNose = true);

which allows you to omit the holdNose argument; both 

voteName(0);

and

voteName(0, true);

Are valid calls to the voteName function. If you don’t specify the holdNose argument in the function call, it 
receives a value of true, according to the above declaration.

Now, some argue that such a procedure declaration is bad, in the long run, because it introduces an 
 ambiguity in exactly how a such a procedure is going to behave; however, there’s no denying that such a 
 procedure can be very convenient at times. 

This short article will show you how to implement such a procedure in PostScript. We’re going to develop a 
“==String” procedure (pronounced “emit string,” if you’re curious) that will take either of two sets of  arguments:

==String % (string)  =>  ---

==String % (string) boolCRLF  =>  ---

In the first case, ==String will simple emit the string to stdout, with no newline afterwards. In the second 
case, if the boolean is true, ==String will emit the string, followed by a newline; if the boolean is false, it will 
emit only the string.

I grant you, this procedure is only barely useful, but it will allow us to demonstrate the technique.



Acumen Journal: PostScript Tech  3

Variable-Argument Procedures

Implementing the Procedure
Our ==String procedure must be able to distinguish between two sets of arguments:

■ A string only: (str) => ---

■ A string and a boolean: (str) bool => ---

It will do this by looking at the topmost argument it finds on the stack. If that argument is a boolean value, 
then it know that it has a string-and-boolean pair of arguments; otherwise, it will presume it has received only 
a string.

Our implementation of an optional-argument procedure will use the PostScript type  command.

obj  type  =>  /typename

This command takes a PostScript object and returns a predefined name indicating the type of 
data the object represents. Table 1 lists the set of names that type can return; I presume their 
meanings are self-explanatory.

The Code

Here's our definition; the example below produces the log file displayed in Figure 1.

/==String {
 dup type /booleantype ne  % Is the topmost argument not a boolean?
 { false } if     % Not a boolean: supply one with a value of false
 { = }{ print } ifelse  % Execute either = or print, depending
} bind def

(Here's ) ==String (some ) ==String
(text.) true ==String

Table 1 Predefine Data Type Names

/arraytype  /gstatetype /operatortype
/booleantype /integertype /packedarraytype
/dicttype  /marktype  /realtype
/filetype  /nametype  /savetype
/fonttype  /nulltype  /stringtype



Acumen Journal: PostScript Tech  4

Variable-Argument Procedures

This is easy and short; in detail, here's what it does:

Step-by-step

dup type

We duplicate the topmost argument (since type will consume it) and then check it's data type.

/booleantype ne

We place a boolean on the stack indicating whether the type operator returned a name other than 
/booleantype. (Note we're using the ne operator to do our comparison.)

{ false } if

If the name returned by type was not /booleantype, we shall assume that we were passed only a string 
argument; we'll supply the missing boolean ourselves, pushing a boolean false on the stack.

At this point, we have a boolean on top of the stack (either the original boolean arguent or one we supplied), 
indicating whether the string should be followed by a newline when sent to stdout.

{ = }{ print } ifelse

We place a pair of procedure bodies on the stack containing calls to the = and print operators. You may 
recall that the = operator prints the topmost item on the stack to stdout, followed by a newline; print takes 
a string as its argument, sending the string to stdout, not following it with a newline.

We execute one or the other of the procedure bodies, depending on the value of the boolean.

Why do this?

Although variable-argument procedures are a powerful tool in other languages, its application in the 
PostScript world is fairly limited. I've used it mostly when modifying existing code (not written by myself ), 
 usually replacing an existing procedure definition with a multi-argument version that retains its original 



Acumen Journal: PostScript Tech  5

Variable-Argument Procedures

 behavior when called by the existing Script, but lets me add new behavior in the Script code I'm modifying.

That said, I don't think the situation has come up more than a small handful of times in the decades I've been 
working with PostScript. If you have encountered a situation where you have used this technique, drop me a 
line; I'd be curious to know about it.



Acumen Journal: PostScript Tech  6Acumen Journal: PostScript Tech  6

Acrobat User

Simple PDF Signatures using flattenPages
Adobe Acrobat has a very impressive facility for electronically signing a document. An electronically-signed 
pdf contract is considered to be a legally binding document in many states and for many government 
 institutions. However, the Acrobat signature mechanism requires a certain amount of set-up, the details 
depending on the version of Acrobat you and your co-signer have; you must have an electronic identity 
established on your computer; you must send a certificate containing this identity to the person who sent 
you the contract; that person must import the certificate into a local copy of Acrobat, etc., etc.

Sometimes you want something not quite that robust, something quick-and-dirty that makes it clear that you 
and a client have agreed to something but that isn't likely to become the basis of a lawsuit.

For example, in my consulting agreements, I do the following: I have them type their name, title, and the date 
into a trio of Text form fields and then click on a button that converts the form fields and their contents into 
artwork on the pdf page, a process known as "flattening" the pdf pages. Once the pdf file is flattened, their 
name, title, and the date are fixed onto the page as normal text.

Perhaps not legally binding, but it does give me (and my client) something that makes it clear we were in 
agreement on the terms.

Try it out; fill in the form fields at right with your name and then click the button; the fields will 
immediately become welded to the page, completely uneditable (well, except with the use of 
touch up and other editing tools).

Cool, huh? Note that I also make the button disappear, since it's no longer needed.

We carry out this little trick by attaching to the button a JavaScript that executes the Doc object's 
flattenPages method. It's very easy to use; let's look at it.

Type your name here:

And today’s date:

Now click here:

Time to sign yer life away, pal!

This example will work only with Adobe Acrobat.



Acumen Journal: PostScript Tech  7

A Simple PDF Signature with flattenPages

Acumen Journal: PostScript Tech  7

The flattenPages Method
The Doc object's flattenPages method is remarkably simple to use. To flatten the annotations on one or 
more pages in a document, you would make a call like the following:

this.flattenPages({
 nStart: 0,
 nEnd: 3,
 nNonPrint: 2
})

The above call will flatten all the annotations on pages 0 through 3. (Remember that JavaScript numbers doc-
ument pages starting with zero.) The named arguments here are:

nStart The zero-based page number of the first page to be flattened.

nEnd (Optional) The final page to be flattened.

Annotations on all the pages from nStart to nEnd will be flattened. If you omit nEnd, then 
annotations on only page nStart will be affected.

nNonPrint (Optional) A code, 0-2, indicating what should happen to non-printing annota-
tions. Possible values are given in Table 1.

The reason we could need this parameter is that once the annotations are flat-
tened, they are artwork like all the rest of the text, graphics, and images on the 
page. If you print the document, the formerly-non-printing annotations will print 
along with all the other page contents. Specifying an nNonPrint argument lets 
something else happen.

As usual, if you wish you can omit the argument names, passing them in the above order:

this.flattenPages(0,3,2)

This takes up less room, but is also less readable.

Table 1 nNonPrint Code Values

Code  Meaning
   0  Flatten non-printing annotations
   1  Don't flatten non-printing annotations
   2  Remove non-printing annotations

The Fuller Scoop

This article assumes you have at least 
 minimal knowledge of Acrobat JavaScript. 
If you need to acquire this expertise, there 
are two documents you can read:

■ If you have little or no programming 
 experience, I recommend (of course) 
Beginning JavaScript for Adobe Acrobat; 
This is my own e-book, available at 
www.acumentraining.com/QEDGuides. 
This e-book will teach you how to add 
JavaScript-based features to your Acrobat 
forms and, along the way, teach you the 
principles of JavaScript programming.

■ If you are an experienced JavaScript 
 programmer, you should go right to 
Adobe’s own, complete  documentation 
by clicking here. This is a  programmer’s 
document that assumes you have 
good knowledge of programming and 
JavaScript.

http://www.acumentraining.com/QEDGuides
http://livedocs.adobe.com/acrobat_sdk/9.1/Acrobat9_1_HTMLHelp/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat9_HTMLHelp&file=JavaScript_SectionPage.70.1.html


Acumen Journal: PostScript Tech  8

A Simple PDF Signature with flattenPages

Acumen Journal: PostScript Tech  8

Flattening Form Fields

If flattenPages is intended to flatten a document's annotations, why does it also work on form fields?

It turns out that, under the hood, the visual component of a form field is just an annotation (of type Widget); 
each form field is represented within the pdf file by two objects:

■ A form field dictionary that defines all of the active characteristics of the field (that is, the parameters that 
determine how it should behave when collecting data from the user).

■ A Widget annotation dictionary that defines what the form field should look like.

Since form fields are built around an annotation, they are affected by flattenPages. 
This means you can have some unintended consequences when you flatten a page. For 
example, you may have noticed that when you clicked on the Do It button at the start 
of this article, all of that page's navigation arrows, implemented as form field buttons, 
became flattened, as well, and therefore stopped working.

Our Sample Code
So, let's return to the example from page 1. The three form fields consist of two text fields 
and a button, named txtName, txtDate, and btnCommit (Figure 1). We are going to attach a 
JavaScript to the button's Mouse Up event that does two things:

■ Hides the button

■ Flattens the current page

I'm assuming you know how to attach a JavaScript to the Mouse Up event of a button. If 
not, check out the references listed in the "Fuller Scoop" sidebar on the previous page.

Note
Links are also affected by flattenPages, 

for the same reason: their visual components are 
implemented as annotations.

x

Figure 1. Our 



Acumen Journal: PostScript Tech  9

A Simple PDF Signature with flattenPages

Acumen Journal: PostScript Tech  9

Here's the (very short) script:

var btn = this.getField("btnCommit")

btn.display = display.hidden
this.flattenPages({
 nStart: btn.page
})

Let's follow it through in detail.

Step by step

var btn = this.getField("btnCommit")

We start by getting a reference to the btnCommit field and assigning it to the variable btn.

btn.display = display.hidden

We then set the display property of the button to the predefined constant display.hidden.

At this point, the button disappears from view.

this.flattenPages({
  nStart: btn.page
 })

Now we flatten the annotations (and form fields and navigation controls and links) on the page. Note that for 
the page number I used btn.page, which will be the page number on  which btnCommit resides; this way I 
didn't need to hard-wire a page number into the code.

I could have written the method call without the argument name: this.flattenPages(btn.page). In real 
life, I probably would have done so for brevity, but for teaching and writing purposes, I prefer the longer, but 
clearer, version.



Acumen Journal: PostScript Tech  10

A Simple PDF Signature with flattenPages

Acumen Journal: PostScript Tech  10

Some Limitations

Fun as this technique is (yes, it is!), it has some limitations of which you should be aware.

Acrobat Only

This works only with the full Adobe Acrobat; in particular, it doesn't work with Adobe Reader, 
Apple's Preview app, or any other application of which I am aware. None of those implement the 
Doc.flattenPages method; the JavaScript will simply fail to execute the method, usually with no sign 
 visible to the user that anything is wrong.

Not Legally Binding

This is not a replacement for an actual, legally-binding electronic signature. I use it simply to verify that 
 everyone is aware of my terms, conditions, hourly rate, candy preference, etc. If you are looking for  something 
that could conceivably form the basis of a lawsuit, then use the real electronic signature  mechanism.

Whether this article's technique is enough for you depends on your clientele. The people for whom I work are 
pretty much always dependable; over almost three decades of  experience, I've been "stood up"  perhaps once, 
though I can't recall the incident just now. So, for me, this is acceptable fo ruse in my consulting  agreements.



Acumen Journal: PostScript Tech  11

Schedule of Classes

Schedule of Classes, December 2012– March 2013

At right are the dates of Acumen Training’s upcoming classes 
in Orange County, California. Click on a class name to see the 
 description of that class on the Acumen Training website.

O.C. and On-Site

These classes are taught in Orange County, California and on-site at 
corporate sites world-wide.

Please see the Acumen Training web site for more information, 
including an up-to-date schedule.

Class Fee

Class fees are as follows:

■ PostScript Foundations $2,000 
■ PDF 1: $2,000 
■ Troubleshooting PostScript $1,500
■ Support Engineers’ PDF   $1,000

There is a 10% discount for signing up three or more students.

Note that if you have four or more  students that need to take a class, 
it will almost certainly be cheaper to arrange an on-site class.

PDF Classes
PDF 1: File Content 

and Structure Dec 10–13 Jan 28-31 Mar 11-14

PDF 2: Advanced File 
Content

Support Engineers’ PDF Feb 7-8 Mar 21-22

PostScript Classes

PostScript Foundations Jan 7-11 Mar 4-8

Advanced PostScript

Variable Data PostScript

Troubleshooting 
PostScript Feb 4-6 Mar 17-20

http://www.acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/Descr_SEPDF.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html


Acumen Journal: PostScript Tech  12

Contacting John Deubert at Acumen Training
For more information

For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site:  www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes

To register for an Acumen Training class, contact John any of the following ways:

Register On-line: www.acumentraining.com/register.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

On-Site Classes

Information regarding classes on corporate sites is available at www.acumentraining.com/Onsite.html. These 
 courses are taught throughout the world; for additional information on classes outside the United States, go 
to 
www.acumentraining.com/OnsitesWorldWide.html.

Back issues

All issues of the Acumen Journal are available at the Acumen Training website:  
www.acumenjournal.com/AcumenJournal.html

Contacting John

http://www.acumentraining.com
mailto:john%40acumentraining.com?subject=
http://www.acumentraining.com/Register.html
mailto:registration%40acumentraining.com?subject=
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/OnsitesWorldWide.html
http://www.acumentraining.com/acumenjournal.html


Acumen Journal: PostScript Tech  13

What’s New?

What’s New at Acumen Training?
Upcoming inexpensive e-books

I'm planning on releasing a series of relatively short (30-40 pages) e-books in January, including a four-book 
series on Acrobat forms. I'll tell you more about them next time.


	Go Next Page Bottom 12: 
	Page 1: Off

	Go Next Page 7: 
	Page 1: Off

	Go Next Page Bottom 13: 
	Page 2: Off
	Page 61: Off

	Go Next Page: 
	Page 2: Off

	Go Home: 
	Page 2: Off

	Go Prev Page: 
	Page 2: Off

	Go Prev Page 7: 
	Go Next Page Bottom 11: 
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 73: Off
	Page 84: Off
	Page 95: Off
	Page 106: Off

	Go Next Page 1: 
	Page 3: Off
	Page 41: Off
	Page 52: Off

	Go Home 1: 
	Page 3: Off
	Page 41: Off
	Page 52: Off

	Go Prev Page 1: 
	Page 3: Off
	Page 41: Off
	Page 52: Off

	Go Next Page 2: 
	Page 6: Off

	Go Home 2: 
	Page 6: Off

	Go Prev Page 2: 
	Page 6: Off

	Go Next Page 10: 
	Page 7: Off
	Page 81: Off
	Page 92: Off
	Page 103: Off

	Go Home 7: 
	Page 7: Off
	Page 81: Off
	Page 92: Off
	Page 103: Off

	Go Prev Page 10: 
	Page 7: Off
	Page 81: Off
	Page 92: Off
	Page 103: Off

	Go Next Page 6: 
	Page 11: Off
	Page 121: Off
	Page 132: Off

	Go Home 6: 
	Page 11: Off
	Page 121: Off
	Page 132: Off

	Go Prev Page 6: 
	Page 11: Off
	Page 121: Off
	Page 132: Off

	Go Next Page Bottom 14: 
	Page 11: Off

	Go Next Page Bottom 15: 
	Go Next Page 9: 
	Go Home 13: 
	Go Prev Page 9: 
	btnName: 
	txtDate: 
	btnCommit: 


