
Table of Contents

The Acrobat User PDF/X and PDF/A
Unnecessary mystery surrounds these cgats standards. They are really just normal PDF
files that agree to certain restrictions.

PostScript Tech Global VM
Global VM is a part of virtual memory that is not subject to the save and restore operators. Why
would you ever want to bypass these important memory management operators? This month
we’ll see.

Class Schedule April, May, June, July

What’s New? PDF Classes Overtake PS Classes
More students signed up for pdf classes than for ps classes in the past year.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 42 © 2006 John Deubert, Acumen Training					�

John Deubert’s Acumen Journal, April 2006

Acrobat User

Acumen Journal: Acrobat User	 �

PDF/X and PDF/A
A certain mystery seems to surround pdf/x and pdf/a in many people’s minds. Among
other things, I am often asked that you need to add to a normal pdf file to make it pdf/x
or pdf/a and whether the resulting file can still be opened by Acrobat or Mac OS’ Preview
application.

This month, let us look at these the purposes and details of these two standards. It turns
out that pdf/x and pdf/A files are subsets of the standard pdf specification; a pdf/x or
pdf/a file is just a standard pdf file that agrees to abide by certain restrictions.

The two standards are intended for different purporses. PDF/X is intended for pre-press;
pdf/a is intended as a long-term archive format. Let’s look at them in detail.

Next Page ->

Acumen Journal: Acrobat User	 �

PDF/X & PDF/A

PDF/X The goal of the pdf/x specification is to eliminate all of the problems that occur with pdf
files intended for pre-press. If you will be sending a document to a print shop as a pdf
file, sending it as a pdf/x file will ensure that all of the errors that routinely keep a pdf file
from printing will have been eliminated.

The pdf/x standard defines several variants, of which only two are used by anyone:
pdf/x‑1a and pdf/x‑3. The latter is an extension of the former, so let’s start with pdf/x-1a.

PDF/X-1a A pdf/x-1a file is just a pdf file that abides by the following restrictions:

Acrobat 4 compatible PDF/X-1a files must be compatible with PDF 1.3.

A pdf/x-1a file must be compatible with Acrobat 4, which implements pdf version
1.3. At issue here is transparency; this restriction eliminates one of the few major (and
irreconcilable) differences between pdf and PostScript.

The pdf file format includes support for transparency (well, opacity,
actually); objects on a pdf page may allow the background to show
through. Files in prepress are typically printed on PostScript devices
and PostScript, unfortunately, has absolutely no support for
transparency; painting in PostScript is always opaque, completely
blocking out the background.

Next Page ->

Acumen Journal: Acrobat User	 �

PDF/X & PDF/A

As a consequence of this incompatibility, transparent objects in a pdf file will be printed
opaque on a PostScirpt device.

To avoid this problem, a pdf file conformant with pdf/x-1a will not use transparency.

Self-contained PDF/X-1a files must be self-contained.

A pdf/x-aa file may have no references to items outside of the pdf file itself.

Primarily, this means that all fonts must be embedded in the pdf file.

Colorspace restrictions PDF/X-1a files may express colors only using cmyk, gray, or spot colors.

This eliminates most of the common problems associated with printing a pdf file on a
press. The file may also use color tables (such as in an 8-bit image) that are based on the
above colorspaces.

Technically, the pdf/x-1a file may use any of the following pdf colorspaces: DeviceCMYK,
DeviceGray, Separation, Indexed. The Indexed colorspace (which specifies color in terms
of a color table) must be based on one of the other three colorspaces.

In particular, note that a pdf/x-1a file may not have managed colors, based on icc or
other profiles.

The file does need to provide an output intent, which indicates the paper or other
medium for which the document is intended. This output intent gives precise meaning
to the color specifications in the pdf file.							 Next Page ->

Acumen Journal: Acrobat User	 �

PDF/X & PDF/A

Three boxes required PDF/X-1a files must contain MediaBox and an ArtBox entries for each page.

The pdf file specification defines several rectangular regions (“boxes”) that may be
associated with each pdf page. The MediaBox is required in a pdf file; the ArtBox is
informational only, though a pdfviewer may choose to use them for its own purposes.
The two boxes required by pdf/x-1a are:

•	 MediaBox - This is the rectangular
area occupied by the physical
medium on which the page will
be printed. In effect, this defines
the papaer size for the page.

•	 Art Box - This rectangle defines
the area occupied by all the
marks on the document page.
This area excludes crop marks
and other marks that are not
part of the final, trimmed
document page.

The pdf spec also defines a BleedBox
(which enloses all marks on the page, including crop marks) and CropBox (which defines
the part of the pdf page that should actually be printed). These two rectangles are not
required by the pdf/x spec, although they are allowed to be present in the file.
													 Next Page ->

Mad Dog
Pest Exterminators
Extraordinaire

Pre-customer Survey
With which of the following pests
is your house routinely infested?

Mice
Roaches
In-laws
All of the above

Mad Dog
Pest Exterminators
Extraordinaire

Pre-customer Survey
With which of the following pests
is your house routinely infested?

Mice
Roaches
In-laws
All of the above

Media Box

Bleed Box

Trim Box

Acumen Journal: Acrobat User	 �

PDF/X & PDF/A

No encryption/passwords PDF/X-1a files must not be encrypted or password protected.

The pdf file must be accessible without any security hindrance. If security is important to
you, then you must create a pdf file that is not conformant with pdf/x-1a.

No halftone screens
or transfer functions PDF/X-1a files must not specify a halftone screen or a transfer function

The presumption is that an appropriate screen will be set up at the printer or press.

A transfer function specifies a “gamma function,” that adjusts the grays (and colors)
specified in the pdf file to values appropriate for the press on which the file is being
printed. As with halftone screen, thsi is something better specified by the press folks at
the print shop.

Compression limitations Data within a PDF/X-1a file may have only the following compression applied to it: jpeg, flate,
run length, CCITTFax.

The pdf file specification defines a relatively large collection of compression methods
that may be applied to image and other data within a pdf file. The pdf/x-1a spec restricts
the allowed compression methods to those listed above.

This requirement looks to me as though it’s a part of being compatible with pdf-1.3.

Next Page ->

Acumen Journal: Acrobat User	 �

PDF/X & PDF/A

Alternative images If an image has an alternative, it must be identical to the original image.

The pdf file spec allows every image in a document to have one or more alternative
versions (perhaps a high-res version to be used in printing, for example). In a pdf/x-1a
document, the alternative versions of an image must be identical to the original. (This
makes it seem to me pointless to have an alternative image at all.)

Trapping Identified The presence or absence of trapping must be stated.

A pdf file may have a Trapping value in it that indicates whether that file is trapped. This
value is required in a pdf/x file. It must be either true (if the file is trapped) or false (if the
file is not trapped).

 Comment Note that how much uncertainty has been eliminated by the pdf/x-1a standard. A pdf/x-1a
file can be opened with any version of Acrobat dating from the past five years; it is
guaranteed to have relatively simple color specifications; it will not depend upon any
fonts or color profiles being installed on the system; it will be openable without passwords
or other decryption. The printer operator will have control over the halftoning and
gamma of the printer without the pdf file attempting to override the printer’s settings.

So what does pdf/x-3 add to the PDF/X-1a spec?

Next Page ->

Acumen Journal: Acrobat User	 �

PDF/X & PDF/A

PDF/X-3 PDF/X-3 is identical to pdf/x-1a, with a single important exception: the file may have
managed colors in it, in addition to the cmyk, gray, and spot colors allowed by pdf/x-1a.
There do exist some well-calibrated environments that use managed colors (using, for
example, icc-based color profiles); pdf/x-3 gives them the ability to do so while still
adhering to a pre-press standard.

PDF/A PDF/A has a different purpose than pdf/x. A pdf/a file is intended for archival purposes;
this standard intends to make the file readable for as long a time as possible.

Here are the rules:

Self-contained A pdf/a file must be self-contained.

As with a pdf/x file, a pdf/a file must contain no references to resources that reside
outside of the file. This means that fonts, profiles, etc. must be embedded in the pdf file.

Managed Color Only A pdf/a file must contain only cie-based managed colors.

Unlike in a pdf/x file, all of the colors within a pdf/a file must be managed. If the file
contains rgb, cmyk, or grayscale values, they must be accompanied by an icc profile
(bundled as part of something called an output profile) that identifies the characteristics
of the particular inks, phosphors, liquid crystal diodes you have in mind.

Next Page ->

Acumen Journal: Acrobat User	 �

PDF/X & PDF/A

Image restrictions A pdf/a file may not have alternative or interpolated images.

Alternative images, as described earlier, are not allowed in a pdf/a file. Also forbidden
is image interpolation, a technique whereby the pdf viewer attempts to smooth the
border between adjacent pixels within the image.

No halftone screens
or transfer functions PDF/A files may not specify either halftone screens or transfer functions.

As with pdf/x, a pdf/a file may not specify either a halftone screen or a transfer function.

No OpenType Fonts PDF/A files may not contain OpenType fonts.

Fonts may be Type 1, TrueType, or Type 3. In all cases, they must be embedded in the
pdf file of course.

No transparency A pdf/a file may not specify the opacity of painted objects.

As we said earlier, transparency can offer significant problems to a printer.

Viewer Compatibility As you can see from this description, both pdf/x and pdf/a files are completely
compatible with all pdf viewers. They differ from standard pdf files only in avoiding
certain problematic, though completely legal, pdf characteristics.
													 Next Page ->

Acumen Journal: Acrobat User	 10

PDF/X & PDF/A

Making Compliant
PDF Files Acrobat Distiller can make files

compliant with either pdf/x or pdf/a;
to do so, the PostScript code that it
receives must obey the above rules.
Among the Distiller PDF Settings is a
Standards tab that lets you specify that
Distiller should make a pdf file that is
pdf/x or /A conformant.

Most of these controls are reasonably
self-evident: which standard the pdf
file should follow; what should happen
if the required “boxes” are missing, etc.

Note that you need to pick the output
intent from a list; you should pick the
item that most closely matches the
paper on which your job will be printed.

Return to Main Menu

Acumen Journal: PostScript Tech	 11

Global VM
Among PostScript programmers, managing virtual memory is somewhat obsessive
behavior. As you recall from your PostScript classes (as well as all your PostScript
experience since then), virtual memory is the ram that is directly accessible to your
PostScript program (as opposed to the memory reserved for page buffer, stacks, etc.).

We directly manage vm with the PostScript operators save and restore. The restore opera-
tor returns memory use (among other things) to whatever it was when you did the
corresponding save. Usually, we enclose successive blocks of our PostScript code in save/
restore pairs, most often putting a save at the beginning and a restore at the end of each page.

PostScript Level 2 introduced Global VM, a separate part of vm that is not subject to save
and restore. The memory used by composite objects (string, arrays, dictionaries) created
in Global vm will not be freed when you execute a restore.

This doesn’t sound very useful, except perhaps for the purpose of implementing
memory leaks. In fact, Global vm is rarely something you want to use or pay attention to;
it was originally invented for Display PostScript to address a circumstance that doesn’t
occur in printer PostScript.

Nonetheless, there is one case in which you do want to allocate your strings, etc. in
Globa vm: resource definitions that are stored on a printing device’s hard disk.

Let’s look at this in detail.

Next Page ->

PostScript Tech

Acumen Journal: PostScript Tech	 12

Global VM

VM: A Review The ram associated with a PostScript device is put
to a number of purposes: page buffers, I/O buffers,
stack space, a variety of caches. The ram that is actually
available for executing your PostScript code is whatever
remains after these other items are allocated. This is
virtual memory, vm. This is where your string, arrays,
and dictionaries (including fonts) are stored; ninety-
nine times out of ten, when you run out of memory,
it is vm that you have exhausted.

Garbage Collection Unfortunately, as the diagram above illustrates, vm is a small part of the total ram in the
printer, so it is relatively easy to fill it up.

PostScript Level 2 introduced automatic garbage collection to virtual memory, so
nowadays, when vm approaches full, PostScript’s memory management can scan
through vm, freeing the memory used by inaccessible strings, arrays, and dictionaries.

Automatic garbage collection can be serious time consumer; there is nothing more
annoying than having your high-speed printer come to an abrupt halt and remain
seemingly idle for a minute or two while the automatic garbage collector peruses
memory, looking for reclaimable items.

Hence, save and restore.

Next Page ->

Page Buffer

IO Buffers

Stack Space

Caches

VM

Acumen Journal: PostScript Tech	 13

Global VM

save & restore These two operators save and restore the state of, among other things, virtual memory.
The save operator does some bookkeeping and leaves the resulting data on the stack as
a saveobject.

The restore operator takes a saveobject from the stack and resurrects the earlier state of
vm. Among other things, this returns the amount of vm used to its earlier level.

Save and restore taken together are much quicker than the automatic garbage collection
reoutines. By enclosing appropriate parts of your PostScript code in save/restore
pairs, you can ensure that the automatic garbage collection never is invoked by your
PostScript code.

Thus, in the following code:

save
/s (Howdy) def
restore

The restore operator reclaims the vm used by the string (Howdy), as well as destroying
the key-value pair s. (Since neither the string nor the key-value pair existed when you
did the save, they both are reclaimed by the restore.

Global VM Global vm, as I said earlier, is a new class of virtual memory that is not subject to save
and restore. Had our Howdy string been allocated in Global vm, the restore operator
would not have reclaimed the memory it occupied.
													 Next Page ->

What else they do

The save and restore opera-
tors actually save and
restore the following:

• VM

• Key-value pairs

• The Graphics State stack

In fact, to a good extent,
save and restore affect
everything except the oper-
and, dictionary, and execu-
tion stacks and the caches.

Acumen Journal: PostScript Tech	 14

Global VM

Ignoring for the moment why you would want to allocate a string in Global vm, how to
you allocate a string in Global vm?

setglobal By default, PostScript defines string, arrays, dictionaries, etc. into normal vm, which is
referred to in this context as Local vm. You change the location in which new objects are
allocated with the setglobal operator.

	 true setglobal

This operator takes a boolean value from the operand stack and sets the current allocation
mode to global (true) or local (false).

Let us modify our previous example to set the allocation mode to global before defining
our key-value pair:

true setglobal
save
/s (Howdy) def
restore

The string Howdy would now be allocated in global vm, as
illustrated at right.

Our Howdy string would not have been reclaimed by the
restore operator; it would have still resided in memory,
taking up vm until eventually scavenged by the automatic
garbage collection routine.
								 Next Page ->

Local VM

true setglobal save /s (Howdy) def

Global VM

/s ()

Howdy

userdict

Acumen Journal: PostScript Tech	 15

Global VM

Interestingly, the key-value pair of which Howdy was a part
(whose key was s) has been reclaimed. The def operator
put this key-value pair into userdict, which is allocated in
local vm and is, therefore, subject to save/restore.

The memory situation after the restore is illustrated at right;
note that Howdy still occupies vm, even though the key-value
pair that contained it is gone from userdict. The string
Howdy is now inaccessible to our PostScript program and
is therefore subject to automatic garbage collection.

globaldict If we want key-value pairs to survive a restore, we must place them in a
dictionary that is itself allocated in global vm. PostScript supplies such
a dictionary on the dictionary stack: globaldict, sandwiched in between
systemdict and userdict. Globaldict, like userdict, is a writeable dictionary
intended for your program’s key-value pairs; however, since globaldict is
allocated in global vm, key-value pairs placed into it will survive across
restore executions.

We can modify our earlier code so that it places globaldict on top of the dictionary stack:

true setglobal
globaldict begin
save
/s (Howdy) def

restore												 Next Page ->

Local VM

restore

Global VM

Howdy

userdict

dict stack

systemdict

globaldict

userdict

Acumen Journal: PostScript Tech	 16

Global VM

In this new version of the code, our variable s is defined into globaldict, which became
our current dictionary with the begin. As a consequence, the variable s will still be
available after the restore invocation.

Allocation Errors The only misstep possible when working with global vm is trying to put a locally-allocated
object into a globally-allocated object. For example, consider the following code:

globaldict begin
save
/s (Whoop-de-doo) def
restore

We place globaldict on the dictionary stack, do a save, and then define a string variable
into globaldict.

Consider what must happen when we execute restore. Because the key-value pair /s is
defined into globaldict, it must survive across the restore. However, our vm allocation
mode throughout this snippet is local; thus, the string is allocated in local vm and must
therefore be reclaimed by the restore.

The restore, scavenging the string, would leave an invalid pointer in the globally-allocated
key-value pair /s. PostScript will not allow this and will return a PostScript error when
you try to execute def. You are not allowed to store a locally-allocated object (the string,
in our case) into a globally-allocated object (globaldict).

The exact error you get seems to vary with interpreter. I used to see vm allocation errors;
I notice the current version of Distiller yields an invalidaccess error.		 Next Page ->

Acumen Journal: PostScript Tech	 17

Global VM

But, Why? Alright, so we have established how to tell PostScript to allocate strings, arrays, and
dictionaries in global vm. The question remains: why would we want to do that?

The answer is: you wouldn’t; at least, not often. The only circumstance I have encountered
is a result of the way that fonts and other resources are stored on a printer’s hard disk.

Disk-based Resources It is useful in many environments to store commonly-used fonts on a printer’s hard
disk so that they don’t need to be downloaded with every print job. When you do this,
what you are actually storing on the printer’s disk is a PostScript program that, when
executed, creates the font resource. This “font program” creates a disctionary, puts into
the dictionary everything needed for a font, and then converts that dictionary into a
font with the definefont operator:

%!PS-AdobeFont-1.0
10 dict begin
/FontType 1 def
/FontMatrix [.001 0 0 .001 0 0] def
...
...
/Optima currenctdict end definefont

The call to definefont is usually encrypted and looks like ascii-encoded nonsense.

Next Page ->

Acumen Journal: PostScript Tech	 18

Global VM

Using Disk-based Resources When you execute the findfont operator, that operator looks for the font in memory
(specifically, in the FontDirectory dictionary). If it doesn’t find the font in memory, it
executes the font’s file on the hard disk, which places the font in the Font Directory; the
program can now use the font.

Unfortunately, in commercial-grade output, findfont is usually executed in the PostScript
code associated with a page in the document, which is usually enclosed by save and
restore. As a result, at the end of the page, the restore will cause the font dictionary to be
reclaimed. If the same font is used on the next page, findfont will need to hit the hard
disk again to re-execute the font program.

Resources in Global VM To ensure that once a resource is stored in vm it stays there, font programs and other
resource definitions always place their resulting definitions into global vm:

%!PS-AdobeFont-1.0
true setglobal
10 dict begin
/FontType 1 def
/FontMatrix [.001 0 0 .001 0 0] def
...
...
/Optima currenctdict end definefont
false setglobal

Next Page ->

Acumen Journal: PostScript Tech	 19

Global VM

Since the resource dictionary and all of its contents are being allocated in global vm,
they will not be reclaimed at the end of the page and will still be available to the next
page’s findfont or findresource.

Thus, we need hit the disk for a resource only the first time we fetch that resource.

This results in a minor, but real reduction in execution time.

Have You Used
Global VM? I’ve never found any other case where using global vm was the best solution to a

problem. If you have ever used global vm to solve a problem, I’d be interested to hear
about it. Let me know the circumstances by email, if you would.

Return to Main Menu

mailto: john@acumentraining.com

Schedule of Classes, April–June 2006
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class on
the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student.	 Registration Info

PDF File Content
and Structure 1

May 15–18

July 10-13

PDF File Content
and Structure 2

May 1–4

PostScript
Foundations May 8–12

Variable Data
PostScript June 5–9

Advanced
PostScript

PostScript for
Support Engineers June 19-23

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule�

New
!

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html

Acrobat Class Schedule

Regretfully, I have suspended teaching Acrobat classes.

							 						

												 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule�

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

PDF Classes
Overtake PS Nothing much to report this time. I do note that over the past year, I have taught more

PDF than PostScript classes. Presumably this trend will continue, with more and more
printer and printing organizations moving to pdf for their print streams. This is sad,
because after twenty years in the business, I still think PostScript is a lot of fun to play with.

												 Return to First Page

What’s New?

Acumen Journal: What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it induce dreams
involving your childhood pet, Fluffy, who was inexplicably able to talk.?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

	 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

PDF Boxes

Mad Dog
Pest Exterminators
Extraordinaire

Pre-customer Survey
With which of the following pests
is your house routinely infested?

Mice
Roaches
In-laws
All of the above

Mad Dog
Pest Exterminators
Extraordinaire

Pre-customer Survey
With which of the following pests
is your house routinely infested?

Mice
Roaches
In-laws
All of the above

Media Box

Bleed Box

Trim Box

Acumen Journal

Distiller “Standards” Settings

Acrobat User

Acumen Journal

	btnHome:
	btnPrevPage:
	btnNextPg:
	btnNextPage:

