
Table of Contents

The Acrobat User Combining Multiple PostScript Files Into a Single PDF File
Acrobat Distiller implements a special-purpose PostScript command you can use to
combine several PostScript files into a single PDF file.

PostScript Tech Making an Outline Font
This month we see how to turn any Type 1 font into an outline font. The show operator will
print outlined text for that font. There’s also a mailbag entry about last month’s article on
double-slashes.

Class Schedule April–May–June–July
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? John has written a book: Adobe Acrobat Forms
A book on making Acrobat forms, published by Peachpit Press.

Contacting Acumen Telephone number, email address, postal address, all the ways of
getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 15 © 2002 John Deubert, Acumen Training

John Deubert’s Acumen Journal, April 2002

Acumen
Training

Combining PostScript Files Into One PDF File
It’s a common task on the newsgroups: combining several PostScript files into a single
PDF file. How to do it best? Many organizations create a series of PostScript files that
then need to be concatenated into a single Acrobat document. (I recently worked with
a group that routinely created reports by combining the PostScript from several hun-
dred one-page Word Perfect documents.)

There are several ways to do this, all of them unsatisfactory in one way or another.

This month, we shall see how to convert several PostScript files into a single PDF file
using a little-used Distiller feature called “RunFile.”

Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Concatenating
PostScript For the purpose of discussion, Let’s say you have three PostScript files you need to

assemble into a single PDF file. Let’s call them File1.ps, File2.ps, and File3.ps.

If distilled individually, these
files produce the one-page
output files illustrated at
right.

We want to concatenate these three Postscript files so
that they become one PDF file, as at right. (If this
illustration looks confusing, it’s a three-page document
viewed in Acrobat’s “Continuous Facing Pages” mode.)

Next Page ->

Acumen Journal: Acrobat User 3

Combining PostScript Files

Concatenating the Files There are two approaches we could take to concatenating these files.

Concatenate the PDF Files We could distill the PostScript files separately and
then concatenate the resulting PDF files in Acrobat.

We concatenate PDF files in Acrobat by opening the
first file in the set and then selecting
Document>Insert Pages, adding each of the other PDF
files, one at a time, to the end of the present file.

Aside from tedium, there is a serious problem with
concatenating the documents this way: if the individ-
ual PDF files contain subsetted fonts, the resulting combined PDF file will contain all of
the individual subsets, even if they are subsets of the same base font.

In our sample files, File1.pdf and File2.pdf both contain a subset of Helvetica. The
resulting Files123.pdf will contain both subsets of Helvetica, even though they were
derived from the same font. Carried to extremes, this can greatly expand the size of
your concatenated PDF file.

Next Page ->

Acumen Journal: Acrobat User 4

Combining PostScript Files

All of the files in this
article are in a zip file on
the Resources page of the
Acumen Training website.

http://www.acumentraining.com/resources.html

Concatenate the PostScript The alternative approach is to concatenate the
PostScript files and then distill the resulting combined
PostScript.

This eliminates the problem with duplicate subset
fonts. Distiller will create a single subset for each font
based on the characters used in all the PostScript files
you are combining. This can result in a dramatically
smaller concatenated PDF file.

This is definitely the way you want to make your concatenated PDF file. Unfortunately,
combining several multi-megabyte PostScript files into a single file can be a significantly
time-consuming activity.

Happily, there is a shortcut, which is the topic of this month’s article. (Thought we’d
never get to it, didn’t you?)

The Files123.ps file in the illustration above does not need to contain the complete
PostScript taken from the original files. Instead, it needs to contain only a short PostScript
program that tells Distiller to distill each of the other files in turn and add them to a
single PDF file. I usually think of Files123.ps as a control file, since it is controlling
Distiller, telling it what files to distill.

The name of the “Distill This File” command we shall place in our control file is “RunFile”;
Files123.ps will have a RunFile line for each PostScript file we want to concatenate.

Next Page ->

Acumen Journal: Acrobat User 5

Combining PostScript Files

Using a Control
File To concatenate a set of PostScript files using a control file, do the following:

1. Place all of the PostScript files you want to concatenate in a single folder on your
hard disk.

Properly speaking, you don’t need to do this; it will, however, make
life easier for you when you write the control file. You will also ease
life’s pain a bit if the folder in which you place the PostScript files
is not nested inside any other folders. (I place my PostScript files
in a folder at the root level of my hard disk, as at right.) You’ll see
why you want to do this when we discuss writing the control file.

2. Write your control file.

This is just a text file with a RunFile line for each of the files you want to concatenate.
We shall look at the exact contents of this file in the next section.

You can save this file anywhere you wish on your hard disk. However, I usually save
it to the folder that contains the PostScript files I’m concatenating.

3. Distill your control program.

Your control program will direct Distiller to convert all of the PostScript files in your
list, adding them to a single PDF file.

Next Page ->

Acumen Journal: Acrobat User 6

Combining PostScript Files

Making a Control File A control file is just a text file containing calls to the PostScript RunFile operator. You
can write it using any text editor. Just open a new file, type in the appropriate lines of
PostScript code, and then save the file to disk. You can use a word processor, such as
Microsoft Word, instead of a text editor, but make sure you save the file as pure text,
not as a word processing file.

It’s better to write your control file with a text editor, rather than a word
processor; it eliminates the chance of occasionally saving your file in the
wrong format. For what it’s worth, my favorite free or cheap text editors on
the Mac and Windows platform are BBEdit Lite and TextPad, respectively. In
Windows, there is also UltraEdit, which is quite good. My preferred UNIX
editor used to be emacs, but since switching to Mac OS X, I find I can use
BBEdit for UNIX, too.

Next Page ->

Acumen Journal: Acrobat User 7

Combining PostScript Files

A RunFile Template Your control file will contain one or two lines of PostScript for each PostScript file you
want to concatenate. Here is the control file for concatenating our three sample files:

(Wheezy:PSFiles:File1.ps) RunFile

false 0 startjob pop

(Wheezy:PSFiles:File2.ps) RunFile

false 0 startjob pop

(Wheezy:PSFiles:File3.ps) RunFile

I suggest you use this file as a template for your own concatenation projects. (A zip
file containing all of the files for this article are among the sample files on the Acumen
Training website’ Resources page: www.acumentraining.com/resources.html).

(Disk:Folder:Path) RunFile For each PostScript file we want to concatenate, we have a RunFile line. The invocation
of RunFile is preceded, in parentheses, by the full pathname of the PostScript file,
starting with the disk name and proceeding through all the folder names to the file.
(This is why it’s best to not nest your PostScript files too deeply in your hard disk’s
directory; it is tiresome typing the pathname for a file buried 15 folders deep.)

The exact manner in which you type the pathname is different for the Mac, Windows,
and UNIX platforms. We’ll come back to this in a moment.

Next Page ->

Acumen Journal: Acrobat User 8

Combining PostScript Files

http://www.acumentraining.com/resources.html

false 0 startjob pop In between each RunFile line, you must place a startjob line. This PostScript operator
isolates the individual files, keeping them from interfering with each other.

That’s all there is to it. Distill the control file and Distiller will combine all of the individual
PostScript files into a single PDF file.

Pathnames Each invocation of RunFile is preceded by the pathname of a PostScript file. The exact way
you express this pathname is different for Macintosh, Windows, and UNIX systems.

On the Mac, pathnames start with the name of the hard drive and folders are separated
by colons. Thus, the path to my PostScript files looked something like the following:

(Wheezy:PSFiles:File2.ps)

In Microsoft Windows, path names start with the drive letter; folders are separated by
backslashes. However, because the backslash character has special meaning in PostScript,
you must use two backslashes when writing the pathname. (This will be seen by Post-
Script as a single backslash.) Thus, a Windows path name would be something like:

(C:\\PSFiles\\File2.ps)

Finally, on UNIX systems, your pathname would start with a slash (indicating the root
directory) and then the subdirectories down to your file, separated by forward slashes:

(/PSFiles/File2.ps)

Next Page ->

Acumen Journal: Acrobat User 9

Combining PostScript Files

Conclusion This technique is pretty easy, once you’ve done it a few times. It is by far the least
troublesome way of combining PostScript files into a single Acrobat file.

If you are an experienced PostScript programmer, you can simplify things a little bit
more. However, this is more than I want to go into in this article. Take a look at the file
named “RunDirEx.txt” in the Xtras folder in your Distiller folder.

Return to Main Menu

Acumen Journal: Acrobat User 10

Combining PostScript Files

Making Outline Fonts
The most common way of printing outline
text in PostScript is to use the charpath
operator, rather than show, to print the
text. The charpath operator adds the outline of the characters in a string to the current
path. For example, the line of PostScript code below has much the same effect as the
show operator, except it prints the text as an outline.

(Binky & Friends) false charpath currentpoint stroke moveto

The “currentpoint stroke moveto” paints the outline characters and leaves the
currentpoint at the end of the painted text, just as show would have done.

There is an alternative approach to printing outline characters; it is relatively easy to
create an outline version of any Type 1 font. Printing outline characters can then be
done by simply calling show.

Let’s see how to do this.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

Binky & Friends!

PaintType To create an outline font, we shall take advantage of the PaintType entry in a Type 1
font dictionary. PaintType is an integer that specifies how a Type 1 font should paint
itself. A value of 0 specifies the font should be filled; a value of 2 specifies the font
should be stroked.

To convert a Type 1 font to an outline font, all we need to do is change PaintType to 2
in the font dictionary. Text in that font will now show as outline text.

StrokeWidth The linewidth that will be used for the stroked character outline is determined by another
entry in the font dictionary: StrokeWidth. The value associated with this key is the
linewidth that should be used for the stroked characters. (If PaintType is 0, StrokeWidth
is ignored and may be omitted.)

StrokeWidth is expressed in Character Space, so appropriate values will be somewhere
around 20 or 30. This width will be scaled down by 1,000 and back up by the point size.

If this sounds vaguely familiar, we mention both PaintType and StrokeWidth in the
PostScript Foundations and PostScript for Support Engineers classes.

Next Page ->

Acumen Journal: PostScript Tech 12

PS Article Title

Making an
Outline Font So, all we need to do to turn a Type 1 font into an outline font is insert a PaintType

of 2 and an appropriate StrokeWidth into the font dictionary. Unfortunately, as you may
remember from your PostScript Foundations class, you can’t change font dictionaries;
they’re read-only. What we need to do is create a new font, identical to the original,
but with PaintType and StrokeWidth entries added.

Changing Fonts Remembering from our PostScript classes, there are four steps to this process:

1. Create a new dictionary, the same size as the original font, plus room for the additional
entries.

2. Copy everything from the original font into the new dictionary. (In PostScript
Level 1, you should avoid copying the FID entry, but I’m going to ignore this; it’s
perfectly alright to copy the FID in Level 2 and Level 3.)

3. Make the changes you want in your font to the new dictionary. In our case, we’ll
add our two key-value pairs.

4. Turn the new dictionary into a font dictionary with the definefont operator.

Let’s see how this applies to making an outline font.

Next Page ->

Acumen Journal: PostScript Tech 13

Making Outline Fonts

Making an Outline Font Here, we add PaintType and StrokeWidth to the font ITC Kabel Bold.

/ItcKabel-Bold findfont

dup length 1 add dict

begin

currentdict copy

/PaintType 2 def

/StrokeWidth 25 def

/ItcKabel-Bold-O currentdict definefont pop

end

/ItcKabel-Bold-O 60 selectfont

72 600 moveto

(Binky & Friends) show

showpage

Let’s look at this in detail.

Next Page ->

Acumen Journal: PostScript Tech 14

Making Outline Fonts

Binky & Friends!
All of the files in this
article are in a zip file on
the Resources page of the
Acumen Training website.

http://www.acumentraining.com/resources.html

The Code in Detail /ItcKabel-Bold findfont

Find the font /ItcKabel-Bold.

dup length 1 add dict
begin

Create a new dictionary that has a capacity one greater than the ITCKabel font dictionary
(reserving space for the new StrokeWidth entry). Put that new dictionary on the
dictionary stack.

Note that these two lines leave a copy of the original font dictionary on the operand stack
(because of the dup).

currentdict copy

Copy the contents of the original font dictionary (left on the stack) into the current
dictionary (which is our newly-created dictionary).

/PaintType 2 def
/StrokeWidth 25 def

Define the PaintType and StrokeWidth entries into our new dictionary.

Next Page ->

Acumen Journal: PostScript Tech 15

Making Outline Fonts

/ItcKabel-Bold-O currentdict definefont pop
end

Turn our new dictionary into a font dictionary with the name ItcKabel-Bold-O. Then
remove our dictionary from the dictionary stack.

/ItcKabel-Bold-O 60 selectfont
72 600 moveto
(Binky & Friends) show

Use our new font. The output is at right.

Pretty easy, eh?

Next Page ->

Acumen Journal: PostScript Tech 16

Making Outline Fonts

Binky & Friends!

The findOfont procedure As a final touch, for convenience, let’s define a procedure that will act as an alternative
to the findfont operator, taking a fontname and returning a font dictionary for the outline
version of that font. We shall call this procedure findOfont.

/findOfont % /OutlineName /OrigName => <<fdict>>

{

findfont

dup length 1 add dict copy

dup /PaintType 2 put

dup /StrokeWidth 25 put

definefont

} bind def

/ItcKabel-Bold-O /ItcKabel-Bold findOfont

60 scalefont setfont

0 0 moveto

(Binky & Friends!) show

The findOfont procedure takes two names from the operand stack: on top, the name of
the original font; beneath, the name of its outline version. It carries out exactly the
same steps as were in the previous PostScript example.

Next Page ->

Acumen Journal: PostScript Tech 17

Making Outline Fonts

Composite fonts
and outlines This technique of making outline fonts really shines when you combine the outline font

with the original in a composite font. This allows you to switch between the outline and
normal styles by placing control codes in the show string. (You may remember we
discuss using composite fonts for this purpose in the Advanced PostScript class.)

The following code is presented without explanation for now. There will be a Journal
article in the next month or two on using Composite fonts for this purpose.

/Kabel-Bold % This will be the name of our composite font

<< /FontType 0 % Type 0 is a composite font

/FontMatrix [1 0 0 1 0 0]

/FDepVector [% Here are the descendent font dictionaries:

/ItcKabel-Bold findfont

/ItcKabel-Bold-O /ItcKabel-Bold findOfont

]

/Encoding [0 1] % Font 0 is normal; font 1 is outline

/FMapType 3

>> definefont pop

/Kabel-Bold 24 selectfont

72 600 moveto

% The escape characters in the string switch between fonts 0 and 1.

(We often use \377\001outline\377\000 text.) show

Next Page ->

Acumen Journal: PostScript Tech 18

Making Outline Fonts

We often use outline text.

The most significant line of PostScript in the preceding program is:

(We often use \377\001outline\377\000 text.) show

Note that we switch between the regular and outlined characters simply by placing
appropriate control characters in the show string. This is way more efficient than any
other method for switching frequently among different fonts; yet, almost no one uses
this method.

If you have taken the Advanced PostScript class, you may remember that I tend to
rant about how powerful and underused the composite font mechanism is. This is a
nice example of that power, but there is simply no time to go into it just now.

Next month, perhaps?

Next Page ->

Acumen Journal: PostScript Tech 19

Making Outline Fonts

Mailbag:
Another Use for
Double-Slashes Bob Anderson of Seboomook Scripting, one of my favorite PostScript people, writes

with regard to the February 2002 article on the double-slash in PostScript. He gives an
excellent additional use of double-slash:

John,

Here is another reason for using // on procedures and other composite

objects:

When writing PostScript that modifies the actions of another PostScript

file there is always the danger of name conflict. Your name can uninten-

tionally override the same name definition in the [original] PostScript

file and visa-versa.

The method I use to eliminate this possibility is to create a private

dictionary on the stack and put all my private names and objects in that

dictionary. At the end of my procset, I remove the private

dictionary from the stack.

The // operator enables my code to access those private objects without

performing a name lookup or having the dictionary on the stack.

Next Page ->

Acumen Journal: PostScript Tech 20

Making Outline Fonts

e.g.

//proc exec

//dictionary /name get

//array # get

//string show

This is especially important when modifying PS code from an unknown source.

Bob Anderson

Seboomook Scripting

bobanderson@mac.com

Next Page ->

Acumen Journal: PostScript Tech 21

Making Outline Fonts

Adding a further example to Bob’s letter, here we redefine show so it spreads out the
character spacing in the printed string. We can append PostScript from some other source
(QuarkXpress, say) to this redefinition and the text in that other PostScript will print
with expanded character spacing. (Why would you want to do this? I don’t know; it’s a
simple example.)

%%BeginResource: procset PrivateStuff 1 1

/PrivateDict 20 dict def

PrivateDict begin

/dx 1 def

end

%%EndResource

%%BeginResource: procset PublicStuff 1 1

/PublicDict 20 dict def

PrivateDict begin % so we can refer to our private things

PublicDict begin % so we can define our public things

/show { //dx 0 ashow } bind def % dx is found in PrivateDict and its

% value is placed in the show proc.

end % Remove PublicDict

end % Remove PrivateDict

%%EndResource

PublicDict begin

...

... Original PostScript from QuarkXpress or other source

... Next Page ->

Acumen Journal: PostScript Tech 22

Making Outline Fonts

In this example, our show redefinition uses a constant, dx, that is defined in a private
dictionary; this dictionary is not present on the Dictionary stack when the PostScript
code we are modifying is executed. Since the dictionary containing dx does not reside
on the Dictionary stack, our dx definition will not interfere with any dx definitions in
the QuarkXpress code whose behavior we are modifying.

Note that the PrivateDict does need to be on the dictionary stack when we are defining
our show procedure so that the double-slash can find the dx definition.

A very clever use of double-slash. Thanks, Bob!
Return to Main Menu

Acumen Journal: PostScript Tech 23

Making Outline Fonts

Acumen Journal 24

Page Title

Schedule of Classes, April – July, 2002
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes
PostScript Foundations May 13 – 17

Advanced PostScript April 29 – May 3 June 24 – 28

PostScript for Support
Engineers April 15 – 19 June 3 – 7

Jaws Development July 23 – 26

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration �

Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes �

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

On-Site Only These classes are taught only on corporate sites. If you have an interest in any of
these classes for your group, please see the Acumen Training website regarding
arranging an on-site class.

Acrobat Essentials This class teaches the student how to make perfect PDF files. It includes complete
coverage of the meaning and proper settings of all of the Distiller Job Options.

Interactive Acrobat Here we show you how to add bookmarks, links, buttons, sounds, movies, form fields,
and other interactive features to an Acrobat file.

Creating Acrobat Forms This class shows you how to make interactive forms in Adobe Acrobat. It steps you
through creating the form, posting form contents to a server, and everything else you
need to create a working PDF form.

Troubleshooting with
Enfocus’ PitStop This class shows the student how to use all of the capabilities of this popular editing

and preflight software.
Back to PostScript Classes

Return to First Page

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Adobe Acrobat
Forms I have just finished writing a book for Peachpit Press on creating Acrobat forms. This

book teaches the reader the details of creating forms in Adobe Acrobat. It covers the
properties and behaviors of all the Acrobat form fields, the fundamentals of submitting
data to a remote program for processing, and everything else you need to collect data
from within an Acrobat document.

The Chapter titles are:

1. Introduction 10. Radio Buttons

2. Creating Forms: an Overview 11. Signatures

3. Basic Interaction: Links 12. Acrobat Design Tools

4. The Form Tool 13. Rollover Help and Other Tricks

5. Appearances and Actions 14. Submitting Data

6. Buttons 15. The Web, Paper Forms, and Other Topics

7. Text fields A. Creating PDF Files for Acrobat Forms

8. Checkboxes B. Useful JavaScripts

9. Lists and Combo boxes

This book is scheduled to be available On May 1, although you can already pre-order it
on Amazon.com.

Return to First Page

Acumen Journal: What’s New

What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you regret
having ever learned to read?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or
PostScript? Feel free to email me about. I’ll answer your question if I can. If enough
people ask the same question, I can turn it into a Journal article.

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Individual PDF Files

Acumen Journal

Concatenated Document

	btnHome:
	btnPrev:
	btnNext:

