
Table of Contents

The Acrobat User Avoiding Font Problems with Document Fonts
The Acrobat Document Fonts dialog box supplies information that lets you head off
common font problems in your PDF files.

PostScript Tech Skipping Blocks of Code With SubFileDecode
PostScript output often needs to have two different sets of procedure definitions to
accommodate, for example, different PostScript languagelevels. This month we look at
an efficient way of conditionally skipping large blocks of PostScript code.

Class Schedule June–July–August
Where and when are we teaching our Acrobat and PostScript classes?
See here!

What’s New? Creating Adobe Acrobat Forms is now available
John’s new Adobe Press book is now available.

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 17 © 2002 John Deubert, Acumen Training

John Deubert’s Acumen Journal, June 2002

Acumen
Training

Using Document Fonts to Avoid Font Problems
PDF files should be self-con-
tained documents, holding
everything they need to
produce the document they
embody. In particular, they
should contain the definitions
of all of the fonts the docu-
ment uses. If the fonts are
not embedded in the PDF
file, a variety of unpleasant
things can happen when someone views the file.

Unfortunately, there is no way to determine, by eye, whether or not a PDF file has its
fonts embedded. Acrobat goes out of its way to make sure the file looks reasonably
good even if the fonts are missing. So how can you tell if you have a file sans fonts?

Acrobat provides a Document Fonts dialog box that can tell you this. The data it provides
needs a little interpretation (it doesn’t just say “these fonts are missing, alas”) and the
dialog box has some limitations. Still, it is the only tool in Acrobat that supplies this
information, so we should know how to use it.

Let’s see how it works.

Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Background:
Embedding Fonts Fonts are embedded in your PDF file by Distiller. Among

Distiller’s Job Options is a Fonts panel that lets you specify
that fonts should be embedded.

It’s pretty simple: just go to Settings > Job Options, select
the Fonts tab, and make sure the Embed All Fonts button is
selected.

If you want to make your PDF file more
compact, you can click the Subset
Embedded Fonts button; for each font,
Distiller will embed only the characters
that are actually used in the PDF file. (If
you don’t subset your fonts, Distiller will
embed each font in its entirety, including
all the characters that are not used in this
document.) Be careful about subsetting
your fonts; it makes the PDF file smaller,
but it also interferes with your ability to
later edit the text in the file.

There’s more to say about subsetting
fonts, but we don’t have space here,
unfortunately. (Maybe a future Journal
article?)

Next Page ->

Acumen Journal: Acrobat User 3

Document Fonts Dialog Box

If a Font Isn’t Embedded If your PDF file uses Optima, say, but Optima isn’t included in the PDF file, Acrobat will
need to decide how to display that text. It will solve the problem one of two ways:

Use a System Font If Optima is installed on the computer being used to view the PDF file (the “viewing
computer”), then the Acrobat viewer will use the viewing computer’s Optima. If that
happens to be the same version of Optima you used to lay out the document, then the
text will display and print exactly as in your original document.

On the other hand, if the viewing system’s Optima is different from yours (from a different
manufacturer, perhaps), the document may display and print with a variety of metrics-
related errors: flush right text becomes slightly ragged, previously-centered text is now
off-center, etc. (The text won’t reflow, if that helps any.)

Create a Stand-In If Optima is neither embedded in the file nor installed on the viewing system, then the
Acrobat viewer will use Adobe’s Multiple Master technology to create a “stand-in” for
that font. The character widths and other metric characteristics of the stand-in font will
match those of the original; the intent is to preserve overall “feel” of the document.

This is quite clever, although the result is not a good replacement for the original font.
For example, at right we have a sample of Clearface Heavy and, beneath it, the stand-in
font created by Acrobat. The metrics (character
widths, X height, cap height, descenders) match the
original, but the character shapes are not very much
like the originals.

Next Page ->

Acumen Journal: Acrobat User 4

Document Fonts Dialog Box

Document Fonts Clearly, it is important that your PDF
files contain the definitions of the
fonts they need.

Acrobat provides a tool that lets you
determine whether any of the fonts
in your PDF unembedded. If you
select Fonts > Document Properties
> Fonts in the File menu, Acrobat
will present you with the Document
Fonts dialog box.

This dialog box describes all of the
fonts used in the PDF file and will let
you determine if any of the fonts
used by your PDF file are missing.

Let’s take a look at what,
exactly, the Document
Fonts dialog box tells us
and then we’ll examine its
limitations.

Next Page ->

Acumen Journal: Acrobat User 5

Document Fonts Dialog Box

In Acrobat 4, this dialog
box is named Font Info.
You get to it by selecting
File>Document Info>Fonts.

What’s Here This dialog box supplies five
pieces of information for each
font used in the document,
of which only one is partic-
ularly useful, diagnostically.

Original Font/Type This is the name and type of
the font used in the original
layout. The font type will be
one of the following:

• Type 1 – The most commonly-used PostScript font type.

• TrueType – A TrueType font in native format. (These are also called “Type 42” fonts.)

• Type 3 – This is the native PostScript font format. These days, it is used primarily
for TrueType fonts that have been converted to a bitmap font.

Encoding This is the character encoding used by the font, that is, the set of character codes that
are used internally to represent text characters. This can be a variety of things, including
MacRoman, Windows, and Custom.

This sounds more important than it really is. In particular, the encoding of a font will not
prevent it from being displayed and printed on any computer platform. The interpretation
of the font’s encoding is built into the PDF file.

Next Page ->

Acumen Journal: Acrobat User 6

Document Fonts Dialog Box

Actual Font/Type These columns describe the
font that is actually used to
display and print the PDF file
on the viewing computer.

The Actual Font column is
the important one; it lets
you head off missing fonts.
Let’s talk about it in detail.

The Actual Font Column The Actual Font column lists how fonts are being represented on the viewing computer.
Each font will have one of four entries, each implying something that may be a problem
in the display and printing of this PDF file.

Same as Original Font
(Bad) If the Actual Font is the same as the Original Font, this font is being displayed with the

viewing system’s version of the font.

This is a concern, since it means the font isn’t embedded in the PDF file. It looks alright
for the moment, because the font happens to be installed on the viewing computer and
that is what our viewer is using to display the text.

However, if we take this document to another computer that doesn’t have the font
installed, the viewer will use a stand-in font in its place. This will not look good. You
should regenerate the PDF file with the fonts embedded.

Next Page ->

Acumen Journal: Acrobat User 7

Document Fonts Dialog Box

Embedded (good) The font is embedded in the
PDF file and that is what the
viewer is using to display
the text. This is good; an
embedded font is a font we
don’t need to worry about.

Embedded Subset (good?) The font is embedded in the
PDF file as a subset and this
is what is being used to dis-
play the text. Here, too, we don’t have much to worry about. The font as displayed and
printed is exactly what was used to lay out the original document.

There is only one possible problem: text in a subsetted font is functionally impossible
to edit in the PDF file. You will be unable to modify the text that uses this font. If
editability is important to you, you should regenerate the PDF file, turning subsetting off.

AdobeSansMM
AdobeSerifMM
(¡Muy malo!) Here’s where we have troubles. These are the Multiple Master fonts that Acrobat uses to

construct stand-ins fonts. One of these two names will appear in the Actual Font column
if everything has gone wrong: the original font was not embedded in the PDF file and it
is not installed on the viewing computer system. What you are seeing on-screen (and
what will print) is the stand-in font. Not what you had in mind.

Go back, regenerate the PDF file, and make sure the fonts are embedded this time.
Next Page ->

Acumen Journal: Acrobat User 8

Document Fonts Dialog Box

Limitations The Document Fonts dialog box can be extremely useful in heading off problems associated
with unembedded fonts. Unfortunately, it is subject to a significant limitation: it only
shows “Actual Font” information for fonts it has actually tried to draw on screen.

If you open a PDF file and
immediately bring up
Document Fonts, the dialog
box will show information for
only the first page of the
document, as at right.
Acrobat doesn’t look ahead
in the document, so it
doesn’t yet know what fonts
are in there, let alone how
it will draw them.

Next Page ->

Acumen Journal: Acrobat User 9

Document Fonts Dialog Box

List All Fonts If you click on the List All
Fonts button, Acrobat will
scan the PDF file and add to
the “Original Font” column all
the fonts used in the
document. The “Actual Font”
column will still be blank,
because Acrobat doesn’t
decide how to display a font
until it is actually called to
paint the text’s characters on the screen.

The Problem Here’s the painful bit: to see
the Actual Font entry for all
the fonts — and, therefore,
determine if any of the
fonts are unembedded —
you must first page through
the document, giving
Acrobat time to draw each
and every page, and then
bring up the Document Fonts
dialog box.

Only then can you tell whether any of the fonts are missing.

Next Page ->

Acumen Journal: Acrobat User 10

Document Fonts Dialog Box

Use Preflight Software Running through your PDF file one
page at a is a pretty boring process if
the PDF file is even a little long; this
places a severe practical restriction
on the usefulness of the Document
Fonts dialog box as a routine diag-
nostic tool. Still, it is perfectly useful
on short PDF files.

For longer files and for routine pre-
flighting in a production environment,
you should invest in a preflight utility:
Enfocus’ PitStop and Markzware’s
Flightcheck come immediately to
mind. Any worthwhile PDF preflight tool will give you a list of unembedded fonts in
no time.

Return to Main Menu

Acumen Journal: Acrobat User 11

Document Fonts Dialog Box

Skipping Blocks of Code with SubFileDecode
Among the many things that keep my social life simple is the delight I take in some of
the less-used mechanisms in the PostScript language. At parties and dinners, I tend to
get inappropriately fervent in my discussions of composite fonts and automatic stroke
adjustment.

This is why most of our dinner invitations are addressed to my wife.

This month and next we’ll discuss something you will have heard me hold forth on if
you have taken the Advanced PostScript class: the SubFileDecode filter. This under-
appreciated filter has a variety of useful applications, including the ability to skip past
large blocks of PostScript code and to restrict the effect of PostScript errors.

This month, we discuss what SubFileDecode does and see how to use it to conditionally
bypass large chunks of PostScript code. This technique is very useful for including
multiple versions of your procedure definitions (to support different PostScript
LanguageLevels, for example) and executing one or the other, depending on circumstance.

Let’s start by reviewing how filters work in PostScript Levels 2 and 3.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

PostScript Filters You probably remember filters from your PostScript classes.
A filter is a device you can attach to a PostScript file object.
Having attached the filter to a file, you can read data from
or write data to that file through the filter; any data passing
through the filter is altered in some way: converted between ASCII to binary, compressed,
or uncompressed.

PostScript Encode filters take raw data and convert it to another form: usually convert
it to ASCII or compress it. Decode filters take the encoded data and convert it back to
its original form.

At right is a list of all of the Decode filters
currently available in PostScript. These fall
into three broad classes:

• Transmission filters convert ASCII-
encoded binary back to the original
binary data.

• Compression filters uncompress the
data passing through them.

• Dummy filters do not change the data passing through them.

Each PostScript Transmission and Compression filter also has an Encode version.

Next Page ->

Acumen Journal: PostScript Tech 13

SubFileDecode

PostScript Decoding Filters

Transmission Filters
ASCIIHexDecode ASCII85Decode

Compression Filters
LZWDecode CCITTFaxDecode
RunLengthDecode DCSDecode
FlateDecode

Dummy Filters
ReusableStreamDecode SubFileDecode

file
object fi

lt
e
r

The filter Operator You attach a filter to a file with the filter operator.

fileobj <params> /Filtername filter => filtered-fileobj

This operator takes from the stack the name of the filter, the file object to which you
want to attach the filter, and, in between them, whatever parameters are required by
the filter. (Most filters have no parameters.) The operator attaches the filter to the file
object and returns a filtered fileobject.

A filtered fileobject looks to PostScript exactly as though it were a regular file object.
Within your PostScript program, you read data from or write data to this object just
like any other file. However, anything you read from this file will be passed through the
attached filter and modified before being handed on to the PostScript operator that
does the reading.

You can hand a filtered fileobject to any PostScript operator that takes a fileobject as
its argument: readstring, readline, etc.

Next Page ->

Acumen Journal: PostScript Tech 14

SubFileDecode

For Example… For example, the following code reads a kilobyte of LZW-compressed binary data.

/lzwSource currentfile /LZWDecode filter def

/buffer 1024 string def

lzwSource buffer readstring

... LZW-compressed data goes here ...

Our data source is currentfile with the LZWDecode filter attached. When the readstring
operator reads data from this filtered fileobject, the data will be read from currentfile,
un-LZW-compressed, and then placed into the string buffer. This will continue until
buffer is filled or we hit end-of-file.

Next Page ->

Acumen Journal: PostScript Tech 15

SubFileDecode

SubFileDecode SubFileDecode is a dummy filter; it doesn’t alter the data passing through it. At first
glance this seems pretty useless, but, in fact, it is astonishingly handy. By attaching
SubFileDecode to currentfile, you can divide your PostScript stream into a series of logical
“subfiles.” This, in turn, allows you to do some remarkably useful things.

Attaching SubFileDecode When you attach SubFileDecode to a file, you need to provide a pair of parameters to
the filter operator:

fileobj count (EOFString) /SubFileDecode filter

• EOFString is the string that defines the end of the subfile. The filtered file object will
register end-of-file when this string of characters passes through it.

• Count is the number of instances of EOFString that should be ignored before returning
EOF. If count is zero, then the first instance of EOFString will cause EOF.

Let’s look at what you can do with this filter.

Next Page ->

Acumen Journal: PostScript Tech 16

SubFileDecode

Skipping Code SubFileDecode is an excellent tool for conditionally skipping long blocks of PostScript
code. This is particularly useful if your PostScript stream has two or more versions of
its procedure definitions, usually to accommodate different versions of PostScript.

Without SubFileDecode Without SubFileDecode, you would do something like this:

isLevel3 % This is a boolean value, let’s assume

{ ...

... Level 3 definitions ...

...

}

{ ...

... Level 2 definitions ...

...

} ifelse

This is perfectly appropriate if you have only a couple of definitions in your ProcSet.
However, if your alternative ProcSets are large, you are faced with a memory problem:
both the Level 2 and Level 3 procedures must be constructed and placed on the stack
before you call ifelse. Thus, regardless of which set of definitions you actually use, you
must store both ProcSets in VM before choosing between them.

The memory manager will eventually garbage collect the ifelse procedures, but this is
still bothersome; garbage collection can be very slow. It’s also esthetically unpleasing;
I dislike creating things in memory (particularly big things) that I’m never going to use.

Next Page ->

Acumen Journal: PostScript Tech 17

SubFileDecode

With SubFileDecode So how do we do this without a memory problem? With SubFileDecode, of course:

currentfile 0 (*EOF*) /SubFileDecode filter

cvx exec % Execute currentfile thru’ the filter

isLevel3 not % Do we not have a Level 3 interpreter?

{ currentfile flushfile } if % ...then flush to end-of-subfile

... % Otherwise continue Lvl 3 proc def’s

... Level 3 procedure defs

...

EOF % End of subfile

% Do it again for the Level 2 proc’s

currentfile 0 (*EOF*) /SubFileDecode filter

cvx exec

isLevel3 { currentfile flushfile } if

...

... Level 2 procedure defs

...

EOF

...

... Rest of PostScript program

...

Let’s step through this in detail.

Next Page ->

Acumen Journal: PostScript Tech 18

SubFileDecode

The Code in Detail currentfile 0 (*EOF*) /SubFileDecode filter

Here we attach the SubFileDecode filter to currentfile, our currently-executing
PostScript stream. This creates a new subfile what will end the first time the text
“*EOF*” passes through it. (Note we are ignoring 0 instances of “*EOF*.”)

The filter operator returns a filtered fileobject representing the subfile.

cvx exec

We convert the filtered fileobject (left on the stack by filter) to executable and then
execute it with exec. Everything from this point to *EOF* will be executed through the
SubFileDecode filter.

isLevel3 not
{ currentfile flushfile } if

We want to skip over the Level 3 ProcSet if we are don’t have a Level 3 interpreter. To do
this, we examine the isLevel3 boolean (presumably set earlier); if it is false, we flush to
the end of currentfile. This is not as alarming as it seems; remember that at this
moment, our currently executing stream (returned by currentfile) is the SubFileDecode
subfile. Flushing currentfile causes the interpreter to skip to just after *EOF*.

EOF

This is the end of the subfile. The interpreter resumes executing our PostScript stream
directly (not through SubFileDecode) immediately after this marker.

Next Page ->

Acumen Journal: PostScript Tech 19

SubFileDecode

currentfile 0 (*EOF*) /SubFileDecode filter
cvx exec
isLevel3 { currentfile flushfile } if
...
EOF

The second block conditionally defines the Level 2 ProcSet, skipping over the code if
our interpreter supports LanguageLevel 3.

So what does this get us? Using SubFileDecode to conditionally execute our PostScript code means we do not
need to construct (and, therefore, store in VM) a procedure body holding the unused
ProcSet. More than anything else, this saves memory; it also saves an insignificant bit
of processing time (the scanner doesn’t have to convert the procedure body contents
to PostScript objects). Transmission time will be nearly identical, of course.

Saving VM is always a virtue.

Next Month:
Isolating Errors Next month we’ll look at a couple of other things you can do with SubFileDecode. In

particular, we’ll see how to isolate the effect of a PostScript error so that it doesn’t kill
the entire rest of the PostScript stream. (There is nothing more annoying than having
a PostScript error in page 2 of a 20,000-page print run kill the remaining 19,998
pages; we can fix that!)

Return to Main Menu

Acumen Journal: PostScript Tech 20

SubFileDecode

Acumen Journal 21

Page Title

Schedule of Classes, June – August, 2002
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes
PostScript Foundations July 29 – Aug 2

Advanced PostScript June 24 – 28 August 12 – 16

PostScript for Support
Engineers August 5 – 9

Jaws Development Sept 30 – Oct 3

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration �

Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes �

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials Jun 20 (1⁄2-day, morning)

Interactive Acrobat

Creating Acrobat Forms Jun 20 (1⁄2-day, afternoon)

Troubleshooting with
Enfocus’ PitStop June 21 (Full day)

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1⁄2-day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Creating Acrobat
Forms is Out! This new book Adobe Press book by John Deubert is a

beginner-to-intermediate guide to the creation and use
of forms in Adobe Acrobat. Presuming no knowledge on
the part of the reader beyond basic Acrobat use, this
book steps the reader through the process of creating a
form in Adobe Acrobat. It details the characteristics
and behavior of each of the Acrobat form field types,
and outlines how to submit the data a form has collect-
ed to a remote server for processing.

If you are looking for an easily-read, concise, accurate
manual that will teach you how to create Acrobat forms
for your organization, you will find this book entirely
satisfactory.

Creating Adobe Acrobat Forms is an Adobe Press book
published by Peachpit Press and is available in all
Better Bookstores, as well as on-line sources, such as
Amazon.com.

Click here for a list of chapters on the Acumen Training website.

Return to First Page

Acumen Journal: What’s New

What’s New?

http://www.acumentraining.com/Book-AcroForms.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you regret
having ever learned to read?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or
PostScript? Feel free to email me about. I’ll answer your question if I can. If enough
people ask the same question, I can turn it into a Journal article.

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Font Job Options

Acumen Journal

Preflight Font Report (from PitStop)

	btnHome:
	btnPrev:
	btnNext:

