
Page Title

Table of Contents

The Acrobat User Making PostScript for PDF, Part 2

This month we conclude our pair of articles on how to make PostScript files for Distiller

and PDF Creator. This month we’ll discuss printer driver settings for Microsoft Windows.

PostScript Tech Making eexec-encrypted PostScript Files

The PostScript eexec operator executes encrypted PostScript. It can be used to hide your

PostScript code from casual inquiry. This month we present the C code that converts a

PostScript file into an encrypted PostScript file suitable for handing to eexec.

Class Schedule May-June-July

Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? Acrobat Classes move up to Acrobat 5.0; Jaws Development rolls out

The Acrobat Essentials and Interactive Acrobat classes have both been upgraded to

cover this latest version of Adobe Acrobat. Quarterly Jaws Development classes available.

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, © 2001 John Deubert, Acumen Training

John Deubert’s Acumen Journal, May 2001

Acumen
Training

Acrobat Article Title - Page 1

Making PostScript for PDF, Part 2

This month we continue our discussion of how to make PostScript files for conversion to

PDF by Acrobat Distiller, PDF Creator or other conversion software. Last month we saw

the controls available to us when making PostScript files on the Macintosh. Now let’s see

what controls Microsoft Windows offers us and how we should set up those controls.

Which Windows? When discussing Microsoft Windows, of course, you need to specify exactly which flavor

of Windows you mean: 95, 98, NT, 2000, ME, or what?

Actually, in our discussion we have it somewhat simple; the controls that affect PostScript

are the similar across all versions of Windows. The dialog box layouts can be different, but

the quantities you are controlling are the same: ASCII vs. binary, outlines vs bitmaps

vs Type 42, etc.

In this issue of the Journal, I’m going to be using screen shots from the lowest common

denominator: Windows 95. For other environments, you will need to take what I say

here and look for the equivalent controls on your system.

Next Page ->

The Acrobat User

Acumen Journal: The Acrobat User

The Print Dialog
Box When you want to make a PostScript

file for converting to PDF, the first

step is to select “Print” in your

application. You will be looking at

the Windows Print dialog box.

There are two controls which you need attend every time you make a PostScript file:

Printer Name Here you specify the printer that Windows will assume when making

a PostScript file. You want to select your target printer from the combo

box’s list of printers. In our case, we want to select our PostScript-to-PDF

converter: Acrobat Distiller, etc.

Print to File: On

This check box tells Windows to create a PostScript file, rather than print

directly to the printer. This should be selected, of course.

Next Page ->

Acumen Journal: Acrobat User

Making PostScript for PDF, Part 2 - Page 2

Properties If you click on the Properties button in the Print dialog box, you will be

faced with a four-tabbed dialog box.

If you choose the PostScript tab, you will be

presented with a single pop-up menu. This

menu allows you to specify what kind of

PostScript file you want to create. You have

your choice among several different

PostScript formats.

You want to choose PostScript (optimize

for speed) when making a PostScript file for PDF. This will

yield somewhat faster PostScript code.

Note that this is different from the choice you would usually

make if you were going to send this PostScript code directly to a service bureau. In

that case, you would usually pick “optimize for portability.” Since we are going to be

converting our PostScript to PDF, the portability issue is much less important.

Next Page ->

Acumen Journal: Acrobat User

Making PostScript for PDF, Part 2 - Page 3

Printer Properties There are some additional controls that you should set

up. To get to these controls, you need to go to the

select Settings->Printers from Windows’ Start menu. At

this point, you will be looking at the Windows Printers

window.

You want to right-click on the icon associated with your

PostScript-to-PDF converter (Acrobat, etc.) and select

Properties.

Windows will present you with a multi-tabbed Printer Properties

dialog box. There are quite a few controls that are important here.

Happily, these controls are all “sticky”; once you have set them

correctly, you don’t have to worry about them again.

Next Page ->

Acumen Journal: Acrobat User

Making PostScript for PDF, Part 2 - Page 4

Fonts Panel The first set of controls you should inspect

in the Printer Properties dialog box is on the

Fonts panel.

Here you have broad control over how

TrueType fonts should be printed and, there-

fore, how they should be embedded in your

final PDF file. There’s only one control to

pick here:

Always use TrueType fonts

Selecting this control ensures

that the TrueType font you use

in your layout is the font that

makes it to the PDF file.

Having decided that we’re going to embed our

TrueType fonts in our PostScript (and, there-

fore, in our PDF file), we need to specify in

what format those fonts should be embedded.

Click on the Send Fonts As… button.

Next Page ->

Acumen Journal: Acrobat User

Making PostScript for PDF, Part 2 - Page 5

Send Fonts As… Here we want to specify the format that should

be used for embedding TrueType and Type 1 fonts.

There are three controls you want to make sure

are set correctly:

Send TrueType fonts as: Type 42

This will embed TrueType fonts in the

final PDF file in their native format.

Adobe Acrobat has no problem with

native TrueType fonts and so there is

no good reason to convert them to

another format.

Favor System TrueType fonts...: On

Selecting this checkbox ensures that

the fonts you used in the layout are

the ones that are actually embedded

in the PostScript and PDF files. (Otherwise, TrueType fonts that have a Type 1

equivalent in Distiller will not be embedded.)

Send PostScript fonts as: In Native Format

This tells Windows to embed Type 1 fonts in the PostScript file and your

PDF file. Your only other choice is “Don’t embed,” which may cause your

fonts to end up in the PDF file as lovely and attractive Courier.

Once you have set these appropriately, click on the OK button to return to the Printer

Properties dialog box.

Next Page ->

Acumen Journal: Acrobat User

Making PostScript for PDF, Part 2 - Page 6

PostScript Tab The second tab you want to select in the

Printer Properties dialog box is PostScript.

Here we have access to controls that specify

the details of the PostScript code generated

by Windows.

Here we have only two controls to worry

about, one of which we’ve seen already.

Format: PostScript (optimize for speed)

This is exactly the same pop-up

menu we saw earlier. As before,

we want to optimize our

PostScript for speed.

Download header with each print job

If you don’t select this button,

Windows will send only a partial

PostScript file to disk; it will

assume that Distiller has had

the Windows PostScript header

stored in its memory.

One last set of controls and we’re done: click on the Advanced… button.

Next Page ->

Acumen Journal: Acrobat User

Making PostScript for PDF, Part 2 - Page 7

Advanced PostScript

Options Finally, we have two controls

among the advanced options that

we must set correctly:

PostScript language level: 3

Acrobat Distiller, PDF

Creator, and most of

the current PostScript-

to-PDF utilities are

built around

LanguageLevel 3

interpreters. Let’s take

advantage of this. The

one cautionary note is

that if you have a very

old version of your

conversion software (Acrobat 3 or PDF Creator 1.0), you may need to back

this control down to LanguageLevel 2.

Data format: Pure binary data

ASCII format offers no benefits when you convert a PostScript file to PDF.

You should use the more compact binary format.

Click the OK button until you are back in Windows. You’re done.

Next Page ->

Acumen Journal: Acrobat User

Making PostScript for PDF, Part 2 - Page 8

That’s It All you have to do now is return to your application and print to a PostScript file. Keep

in mind that every time you print to PostScript, you should check the printer pop-up

menu and the Print dialog box’s Properties to make sure they are set correctly.

You need to set the Printer Properties only once.

Return to Main Menu

Acumen Journal: Acrobat User

Making PostScript for PDF, Part 2 - Page 9

Making eexec-Encrypted PostScript Files

If you’ve been in the PostScript biz for a while, it has probably happened to you that

you come up with a piece of PostScript that was hard to write and that does something

important to your application. You’d just as soon not give your hard work away to the

world at large.

Unfortunately, PostScript code is awfully difficult to keep secret. Just about anyone can

open it with a text editor and see how you solved your problem.

There is a solution to this built into PostScript: the eexec operator. This operator can

execute the contents of a file or string that contains encrypted PostScript code. The

encryption scheme has long been published, so this doesn’t make the PostScript truly

secure. It does, however, hide your code from casual visitors.

This month… This month, PostScript Tech will review how the eexec operator works and then take a

look at an ANSI C program that converts a PostScript file into an encrypted PostScript file.

The C code for this month’s example is available on the Acumen Training website at

www.acumentraining.com/resources.html.

Next Page ->

PS Article Title - Page 1

Acumen Journal: PostScript Tech

PostScript Tech

http://www.acumentraining.com/resources.html

The eexec
Operator The eexec operator was introduced into the PostScript language for the use of the Type 1

font mechanism. Type 1 fonts start out in clear PostScript that ends with a call to

eexec. The encrypted PostScript that follows eexec makes up the great majority of the

font definition.

Adobe published the encryption algorithm when they published the Type 1 font spec,

so the eexec encryption has been an open secret since 1990 or so.

The eexec operator takes a file object or string object from the operand stack and exe-

cutes the contents of the file or string.

fileobj eexec => - - -

(str) eexec => - - -

The contents of the string or file must be properly encrypted PostScript in either binary

or hexadecimal format.

Next Page ->

Acumen Journal: PostScript Tech

Making Encrypted PostScript Files - Page 2

Mixing Encrypted and

Unencrypted Code If eexec’s argument is a file object, the operator will execute the contents of that file

until end-of-file or until the file is closed. Thus, if you want to have only part of a

PostScript file be encrypted, reverting afterward to plain PostScript, you must either:

• Execute the file through the SubFileDecode filter or other filter that allows you to

explicitly specify an end-of-data. Your invocation of eexec would look like this:

currentfile 0 (*ENDOFEEXEC*) /SubFileDecode filter eexec

...encrypted PostScript goes here...

ENDOFEEXEC

... back to normal PostScript ...

• End the encrypted PostScript by closing currentfile. That is, the final PostScript

execution in the encrypted code should be:

currentfile closefile

This works because eexec places its source file, with an attached filter, onto the

Execution stack. The closefile operator will cause this encrypted file object to be

removed from the Execution stack and the interpreter will revert to unencrypted

execution.

Next Page ->

Acumen Journal: PostScript Tech

Making Encrypted PostScript Files - Page 3

eexec and the Dict Stack The eexec operator places systemdict on top of the dictionary stack before executing

the encrypted code. As a consequence, all PostScript operators in the encrypted

PostScript will execute with their default, native-PostScript definitions.

Also as a consequence, if the encrypted PostScript wants to define any key-value pairs,

it will need to put its own dictionary on top of the dictionary stack. Otherwise, the def

operator will try putting the definition into systemdict, which is read-only.

Next Page ->

Acumen Journal: PostScript Tech

Making Encrypted PostScript Files - Page 4

The Encryption
Algorithm The eexec encryption algorithm is published in the Adobe Type 1 Font Format manual,

available from Adobe’s website: partners.adobe.com/asn/developer/pdfs/tn/t1_spec.pdf.

To convert clear PostScript to encrypted PostScript:

1. Generate four arbitrary bytes to be added to the beginning of the clear PS. If you are

going to be generating hexadecimal code, then all four of these must be hexadecimal

numerals (“A” - “F,” “a” - “f,” “0” - “9”). Conversely, if you are generating binary

encrypted code, at least one of these bytes must not be a hexadecimal numeral.

2. Initialize an unsigned 16-bit integer, R, to the encryption key 55665.

3. For each byte, P, of plain PostScript code (beginning with the four bytes we

prepended), do the following:

- Exclusive-OR the plaintext byte with the high order 8 bits of R; the result will be

the encrypted byte value, C.

- Calculate the next value of R as follows:

Rnext = ((C + R) x C1 + C2) mod 65536

where

C1 = 52845 C2 = 22719

Note that each byte’s value of R is calculated from the preceding byte.

Next Page ->

Acumen Journal: PostScript Tech

Making Encrypted PostScript Files - Page 5

http://partners.adobe.com/asn/developer/pdfs/tn/t1_spec.pdf.

Doing it in C The ANSI C code that implements this algorithm is pretty straightforward. To make

things easy, Adobe supplies C code to do this a byte at a time. My code below is a bit

different, mostly in that it converts the PostScript a buffer at a time.

The C code converts the contents of a PostScript file into an encrypted PostScript file

that starts with a call to eexec. The listing here has been edited for brevity; there are

parts missing. (For example, I’ve dropped all the procedure declarations and

#include’s.)

The full program is on the Acumen Training resources web page:

www.acumentraining.com/resources.html. Look among the PostScript sample code.

Note that this program is written for clarity, not necessarily as excellent final code. (For

example, I’ve hardwired constants with the names of the source and destination files and

have dropped any pretense at error trapping.) Feel free to fix this up as appropriate to

your needs.

This program stretches across three page, even with parts left out.

Next Page ->

Acumen Journal: PostScript Tech

Making Encrypted PostScript Files - Page 6

http://www.acumentraining.com/resources.html

The C Code

Some constants #define kSrcFileName "source.ps"

#define kDestFileName "dest.ps"

#define kLogFileName "source.log"

#define kBufferLength 4096

Next Page ->

Acumen Journal: PostScript Tech

Making Encrypted PostScript Files - Page 7

main() int main(void)
{

FILE *src; // This is our original PostScript file

FILE *dest; // This will receive our encrypted PS

unsigned char *buffer;
size_t count;
char phonyBytes[] = "WXYZ"; // Our initial four bytes

src = fopen(kSrcFileName, "rb"); // Open our files

dest = fopen(kDestFileName, "wb");
buffer = (unsigned char *)malloc(kBufferLength); // Allocate our buffer

fputs("%!PS\rcurrentfile eexec\r", dest); // Write to dest our call to eexec

EncryptBuffer((unsigned char *)phonyBytes,4); // Encrypt our phony bytes…

fwrite(phonyBytes, 1, 4, dest); // …and write them to dest

while (!feof(src)) { // For the entire source file:

count = fread(buffer, 1, kBufferLength, src); // Read PS code…
EncryptBuffer(buffer, count); // …encrypt it…

fwrite(buffer, 1, count, dest); // …& write it to dest.

}

fclose(src);
fclose(dest);
free(buffer);

return 0;
}

Next Page ->

Acumen Journal: PostScript Tech

Making Encrypted PostScript Files - Page 8

EncryptBuffer() void EncryptBuffer(unsigned char *buffer, size_t len)

{

// Here are our encryption values

static unsigned short r = 55665;

static unsigned short c1 = 52845;

static unsigned short c2 = 22719;

unsigned char *b, *b0;

b0 = buffer + len;

for (b = buffer; b < b0; b++) {

*b = (*b ^ (r >> 8));

r = (*b + r) * c1 + c2;

}

}

The Result When executed, the program produces a file containing a call to eexec followed by the

encrypted PostScript. In the case of a test run here at Acumen Mansion, the contents

of the destination file were:

%!PS

currentfile eexec

ÑÖH"0o;W5˛Î �PyêáÎ¯!õ’{∫ bƒ Ëå˜¯‘˜’ŒR dã¡üîÚ 0G†[ë"â§˜˝1∑+Z%º{‰:÷–)

Next Page ->

Acumen Journal: PostScript Tech

Making Encrypted PostScript Files - Page 9

Code on the
Website The code on the Acumen Training website differs from the above in that:

• It’s complete. Compile it and run it and it will convert a PostScript file to an encrypted

PostScript file.

• It does some minimal error trapping. If it can’t open one of the files or if malloc

fails, the program exits gracefully.

Feel free to use the code on the website as a starting point for a more elaborate program

of your own. You might want to generate encrypted output in hexadecimal format,

implement an interface (command line, if nothing else) that lets you specify the source

and destination files, etc.

It is rather fun to hide your PostScript from at least casually prying eyes.

Return to First Page

Acumen Journal: PostScript Tech

Making Encrypted PostScript Files - Page 10

Schedule of Classes, May 2001 - July 2001

Following are the dates and locations of Acumen Training’s PostScript and Acrobat classes.

Clicking on a class name below will take you to the Acumen training website to the

description of that class.

The PostScript classes are taught in Orange County, California, near the Orange County

airport, and in London at Adobe Systems’ office near Heathrow.

PostScript Classes

PostScript Foundations Orange Co., CA June 4 - 8 Orange Co., CA August 6 - 10

Advanced PostScript Orange Co., CA July 16 - 19

PostScript for Support

Engineers Orange Co., CA May 14 - 30 Orange Co., CA July 23 -27

London, UK June 18 - 22

Jaws Development Orange Co., CA Apr 30 - May 3

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $1,750 per student. The Jaws class is $1,900 per Registration →

Acrobat Classes →

Page Title

Acumen Journal: Class Schedule

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

Acumen training teaches three users’ classes in Adobe Acrobat (the links below will

take you to the Acumen website’s complete description):

Acrobat Essentials This class teaches the student how to make perfect PDF files. It includes complete

coverage of the meaning and proper settings of all of the Distiller Job Options.

Interactive Acrobat Here we show you how to add bookmarks, links, buttons, sounds, movies, form fields,

and other interactive features to an Acrobat file.

Troubleshooting with

Enfocus’ PitStop This class shows the student how to use all of the capabilities of this popular editing

and preflight software.

On-site Only The Acrobat classes are taught only on corporate sites. If you have an interest in any

of these classes for your group, please see the Acumen Training website regarding

arranging an on-site class.

Back to PostScript Classes

Return to First Page

Page Title

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions or for any other information about Acumen’s classes:

Web site: http://www.acumentraining.com

email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact us any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:

www.acumenjournal.com/AcumenJournal.html

Return to First Page

Page Title

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Acrobat Classes
Move to 5.0 Both the Acrobat Essentials and Interactive Acrobat classes have been upgraded to

cover Acrobat 5.0. The new version of Acrobat presents us with a new set of additional

Job Option controls that one needs to set correctly to make successful PDF files.

Additionally, Acrobat 5.0 offers new features that open new possibilities. The Acrobat

classes now include these new features and options.

Jaws Development
Rolls out The first-ever Jaws Development class is being held April 30 - May 3. If you are a Jaws

OEM, you owe it to yourself to look into this class. From basic invocation to writing

device drivers and classes, this class provides a solid foundation for using the Jaws

PostScript interpreter with your printing device or application.

Requirements & Schedule Students need to be proficient in C and should have reasonable knowledge of PostScript.

(The PostScript Foundations class is highly recommended; you can better understand

the pagedevice structure if you know what the PostScript setpagedevice does.)

The next scheduled class is July 30 - August 2 in Costa Mesa, California. It can be also

be conducted, of course, on corporate sites. Go to the Acumen Training website for a

course description.

Return to First Page

Page Title

Acumen Journal: What’s New

What’s New?

http://www.acumentraining.com/Descr_Jaws.html

Journal Feedback

If you have any comments regarding the Acumen Journal, please let us know. In

particular, we are looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?

Was it well written and understandable? Did you like it, hate it, or did it make you want

to eat brussels sprouts? How could we make it better? Do you like the PDF format?

Suggestions for articles. Each Journal issue contains one article each on PostScript

and Acrobat. What topics would you like us to address?

Questions and Answers. We are planning a Q&A section for future issues. Do you

have any questions about Acrobat, PDF or PostScript?

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Page Title

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	btnHome:
	btnPrev:
	btnNext:

