
Table of Contents

The Acrobat User JavaScript: Creating a Nagware PDF Document, Part 2
This month we finish the nagware document we started in the previous issue. This
Acrobat document periodically asks the user for payment, eventually rendering itself
unreadable if the user doesn’t type in a serial number.

PostScript Tech Using EPS Files in Handwritten PostScript Code
People who do variable data printing frequently do so with handwritten PostScript code.
Encapsulated PostScript files provide a very convenient way to include in these files logos
and other graphics created in applications such as Adobe Illustrator® and Photoshop®.

Class Schedule Dec–Mar

What’s New? Still Working on PDF File Content and Structure 2
The second PDF File Content and Structure class will be ready early 2005.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 36 © 2004 John Deubert, Acumen Training rev. 11/22/04

John Deubert’s Acumen Journal, November 2004

Acrobat User

Acumen Journal: Acrobat User 2

JavaScript: Creating a Nagware Document, Part 2
Last issue, we started to create an
Acrobat document that periodically
checks to see if the user has registered
and obtained a serial number and, if
not, repeatedly nags the reader to do
so. At the end of the previous article,
we were well on our way; we had an Acrobat file that would place increasingly strident
“Pay Me” messages on the page.

This month, we shall finish the job. We’ll put pitiful pictures of our starving family on
the page and ultimately, if even this plea is ignored, render the document unreadable.

Doing this will give us the chance to discuss JavaScript loops, something I purposely
ignored in my JavaScript book.

Before going any further, you should re-read the September 2004 Journal, to see
where our nagware document stands.

Next Page ->

Files on Website

As usual, the files associated
with this article are available
on the Acumen Training
Resources page. Look for
the file Nag2.zip.

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User 3

Creating a Nagware Document, Part 2

Where We Are;
Where We’re Going When we left off in the last issue, our nagware document did the following:

• The first two times the document is opened, it does nothing; the user is allowed to
read the document unmolested.

• On the third opening, the document
displays a dialog box asking for
payment.

• On the fourth and fifth openings,
the document adds annotations to
the document’s first page, again asking for payment.

This Month’s Additions This month, we are going to add two more levels of nag:

• On the sixth opening, we’ll work on the reader’s
sympathy by presenting a photo of our poor child
scavenging for food.

• On the seventh opening, we’ll white out all of the pages, making the document
unreadable.

We’ll finish by adding a registration mechanism, removing the nags when the user
supplies a serial number.
 Next Page ->

Acumen Journal: Acrobat User 4

Creating a Nagware Document, Part 2

The Code So Far We implement our nags as a document JavaScript that, at this point, looks like this
(this is heavily abbreviated, of course):

// If global.nagCount doesn’t exist, then create it.
if (global.nagCount == null) {
 global.nagCount = 1
 global.setPersistent(“nagCount”, true)
}
else // Otherwise: increment it
 global.nagCount++

if (global.nagCount > 2) // Is nagCount greater than 2?
 app.alert("You haven’t paid for this document.\n Pay me.")

switch (global.nagCount) { // Examine global.nagCount
 case 4: // If it’s 4, do the following:
 ... // Add annotation at bottom of page
 break

 case 5: // If it’s 5, do the following:
 ... // Add annotation in middle of page
 break
}
 Next Page ->

Acumen Journal: Acrobat User 5

Creating a Nagware Document, Part 2

New Nags
Nag 6: Add Picture Our first new nag, invoked upon the sixth opening

of the document, will display a picture and a text
box pointing out the human consequences of
not paying the shareware fee.

These two items are actually form fields,
both initially invisible:

• A Button field named “btnGigi” that has
the photograph as its label.

• A Text field named “txtBeg” whose
content is set to our plea. Note that I
have selected a background color for this
field that improves visibility.

I refer you to either my book Creating
Acrobat Forms or to the Acrobat on-line help to see how to create and place these
form fields.

Next Page ->

Acumen Journal: Acrobat User 6

Creating a Nagware Document, Part 2

The JavaScript The JavaScript code for the new nag adds an additional Case clause that simply
makes these fields visible.

switch (global.nagCount) { // Examine global.nagCount
 case 4: // If it’s 4, do the following:
 ... // Add annotation at bottom of page
 break

 case 5: // If it’s 5, do the following:
 ... // Add annotation in middle of page
 break

 case 6: // If it’s 6, get references to the form fields...
 var gigi = this.getField(“btnGigi”)
 var beg = this.getField(“txtBeg”)
 // ...and make them visible (that is, not hidden)
 gigi.hidden = false
 beg.hidden = false
 break
}

Our case 6: clause is very straightforward; it simply sets the hidden property of our
two form fields to false, making those fields visible. You may want to check the
Extending Acrobat Forms book for the details on how this code works.
 Next Page ->

Sample File

This version of the Nagware
document is in this month’s
zip file with the name
Nag6.pdf.

Incidentally, the final example
in the previous article was
Nag3a.pdf. There is no Nag4
or Nag5; I decided to change
the file numbering.

Acumen Journal: Acrobat User 7

Creating a Nagware Document, Part 2

Nag 7: Make
Unreadable Our final nag renders the document

unuseable by “whiting out” the pages. We
shall do this by placing an annotation onto
the page that covers the entire page. We’ll
do this with a call to the Doc object’s addAnnot
method, as in some of our previous nags.

We are going to make this nag code the
default clause in our switch statement:

switch(global.nagCount) {
 ...
 case 5:
 ...
 break
 case 6:
 ...
 break
 default:
 ... mask the page
}

Next Page ->

Sample File

This version of the Nagware
document is in this month’s
zip file with the name
Nag7.pdf.

Acumen Journal: Acrobat User 8

Creating a Nagware Document, Part 2

Remember that the switch statement executes the default clause if none of the other
cases are true. In our case, if global.nagCount does not have any values 0 through 6,
we’ll execute the default code, masking the Acrobat page with an annotation.

For this to work, we must supply additional case statements, handling nagCount values
0 through 3. Since we don’t want to actually do anything for these cases, we can simply
have them execute a break, exiting the switch statement.

Diagramatically, our switch statement now looks like this:

switch(global.nagCount) {
 case 0: // Do nothing for cases 0 through 3
 case 1:
 case 2:
 case 3:
 break
 case 4:
 ... add the 1st annotation
 case 5:
 ... add the 2nd annotation
 case 6:
 ... make the picture and text field visible
 default:
 ... mask the page
}

Next Page ->

Acumen Journal: Acrobat User 9

Creating a Nagware Document, Part 2

To mask the pages, we use code nearly identical to what we have done before: we
make a call to the Doc object’s addAnnot method.

default: // Time to pull off the kid gloves
 this.addAnnot({ // This annotation covers the entire page...
 page: 0, // ...except for the top inch or so.
 type: “FreeText”,
 rect: [0, 0, 612, 730],
 alignment: 1,
 contents: “Alright. You asked for it.”,
 fillColor: color.white,
 textSize: 30,
 width: 0,
 readOnly: true
 })

This method call places a white annotation over the entire page, minus a small margin
left visible at the top. (I wanted the “reset nagCount” button to be accessible.)

Pretty easy, but for one thing: this call to addAnnot places a mask over only the first
page of the Acrobat file (the page property is set to 0). We, of course, want to place a
mask over all of the document’s pages. We need to have our default class call addAnnot
for each page in the document. I, for one, do not want to type in the addAnnot call for
each page in a 600-page tome.

Happily, there is a much easier way to do this, using something called a for loop.
 Next Page ->

Acumen Journal: Acrobat User 10

Creating a Nagware Document, Part 2

Introduction
to Loops Loops are an extremely important tool in any programming language. They allow you

to repeatedly execute blocks of code until some exit condition is satisfied. Here we
are going to introduce the for loop, which will allow us to conveniently place a mask
on every page in our document. If you already know how for loops work, you may
want to skip this section and go directly to the new version of our nag code.

The for Loop The for loop repeatedly executes a specified block of code while a particular condition
is true. Generically, the loop looks like this:

for (initialization; repeat-while-true; increment) {
 repeated block
}

For example, the loop below steps through each page in the current Acrobat document
and removes all the links on each page. (I’ll let you look up the Doc object’s removeLinks
method in the Acrobat JavaScript Object Reference.)

for (var i = 0; i < this.numPages; i++) {
 this.removeLinks(i, [0, 0, 612, 792])
}

Next Page ->

Acumen Journal: Acrobat User 11

Creating a Nagware Document, Part 2

for Loop Arguments Looking at the sample on the previous page,the braces enclose the JavaScript code that
is to be repeated each time through the loop. The parentheses immediately following
the for keyword contains a set of three JavaScript code snippets separated by semicolons:

for (initialization; repeat-while-true; increment) {
 repeated block
}

• initialization - This is code that will be executed at the beginning of the loop. It
should initialize any variables you want to use in the course of the loop. In our
case, we initialized a variable i to 0, the page number of the first page in a PDF file.

• repeat-while-true - This is JavaScript code that tests to see if some condition is true.
After each time through the loop, for will check the value of this test and repeat
the loop again if the test is true. In our example, we look to see if i is less than
this.numPages; the for loop will therefore continue as long as i is less than the
number of pages in our document. (Remember PDF page numbers start at 0.)

• increment - This code is executed at the end of each pass through the loop. This
code should increment or otherwise modify the values of any variables used within
the loop. In our example, we increment i, moving on to the next page number.

Note that our repeated code, in the braces, uses i as the page number in the call to
this.removeLinks; as we proceed through the loop, we shall look at each page in turn.

Next Page ->

Acumen Journal: Acrobat User 12

Creating a Nagware Document, Part 2

Masking All the Pages What we want to do in our final nag is to place a white mask over all of the pages. To
do this, we shall simply place our earlier call to this.addAnnot in a for loop and use our
loop counter, i, as the page number in addAnnot:

default:
 for (var i = 0; i < this.numPages; i++) {
 this.addAnnot({
 page: i, // Use i for the page number
 type: “FreeText”,
 rect: [0, 0, 612, 730],
 alignment: 1,
 contents: “Alright. You asked for it.”,
 fillColor: color.white,
 textSize: 30,
 width: 0,
 readOnly: true
 })
 }

Each time through the loop, i takes on the value of a new page number and we add a
masking annotation to a new page. When we exit from the loop, we will have placed
a mask over all of the pages in the document.

Next Page ->

Sample File

This version of the Nagware
document is in this month’s
zip file with the name
Nag7a.pdf.

Acumen Journal: Acrobat User 13

Creating a Nagware Document, Part 2

Registration At this point, the nagging part of our task is done; our Acrobat document will repeatedly
ask for money and eventually become unreadable if the user doesn’t pay up.

So what if the user pays up? How do we tell our document to stop nagging once the
user has registered?

What we shall do use a global.nagCount value of –1 to indicate the user has registered
the document. We shall modify our document JavaScript so that it does nothing if
nagCount is -1.

The final version of our Acrobat file, entitled NagFinal.pdf,
adds a Register button. This button executes a JavaScript
that does the following:

• Display a dialog box asking the user for a serial number.

• Decides whether the serial number entered by the
user is valid.

• If so, then the script sets
global.nagCount to -1.

 It would probably be good if
the script also hid the Register
button if the serial number is valid, since the document has now been registered.
However, I shall leave that as an Exercise For the Student.
 Next Page ->

Sample File

This final version of the
Nagware document is in
this month’s zip file with the
name NagFinal.pdf.

Acumen Journal: Acrobat User 14

Creating a Nagware Document, Part 2

The Button Script The Register button’s Mouse Up action will execute the following JavaScript:

var s = app.response(“Please enter your serial number:”,
 ”Document Registration”)
if (s != null) {
 if (s == “Password”) { // Valid serial number?
 global.nagCount = -1 // Yes: set nagCount to -1
 app.alert(“You will need to re-open this document
 to see its contents again.”)
 }
 else // Not valid: tell the user
 app.alert(“Sorry. That’s not a valid password.”)
}

Step by Step Let’s look at this script in detail:

var s = app.response(“Please enter your serial number:”,
 ”Document Registration”)

The app object’s response method
presents to the user a dialog box
that asks for a text response. The
user can type text into the text
field and click OK or Cancel.

Next Page ->

Button Script

This button script is in this
month’s zip file with the name
BtnScript.js. This script also
resides in the btnRegister
Mouse Up action, of course.

Acumen Journal: Acrobat User 15

Creating a Nagware Document, Part 2

The App.response method takes two strings as its arguments:

• The prompt string that should be presented to the user.

• A title for the dialog box.

There are also a couple of additional, optional arguments you may pass to the method,
but they have no bearing on our present script and we shall ignore them.

The method returns either the text entered by the user or null if the user clicked
Cancel. In our case, we assign the text or the null to the variable s.

if (s != null) {
 ...
 ...
}

If s is null, then the user clicked on the Cancel button and we need to do nothing. Our if
statement will execute the JavaScript in braces if s is not null. (Remember that “!=” means
“is not equal to.”)

Next Page ->

Acumen Journal: Acrobat User 16

Creating a Nagware Document, Part 2

if (s == “Password”) { // Valid serial number?
 global.nagCount = -1 // Yes: set nagCount to -1
 app.alert(“You will need to re-open this document
 to see its contents again.”)
}

Within our if clause, executed if s isn’t null, we shall examine the value of s to see if it is
a valid serial number. In real life, this would probably entail some algorithmic calculation
to see if s matches a pattern consistent with however you generated your serial numbers.
In our case, we shall be lazy and simply see if s is the string “Password.”

If s is “Password”, then we shall set
global.negCount to -1, our signal that
the user has registered. We shall also
point out to the user that the reminders
littering the Acrobat page will not go
away until they close and then reopen
the document. (We could automatically remove the nags if we wished; see the sidebar.)

else // Not valid: tell the user
 app.alert(“Sorry. That’s not a valid password.”)

If s is not “Password”, then we’ll tell the user about it.

Next Page ->

Removing the Nags

An actual Register button
would probably want to
remove any existing nags.
The code to do that is beyond
what I want to cover in this
article.

However, if you’re curious
how to do this, the Reset
numPages button removes
all of the existing annotations
and hides the form fields
again. This button’s Mouse
Up script is in the zip file as
resetNagCount.js.

Acumen Journal: Acrobat User 17

Creating a Nagware Document, Part 2

Change the
Document Script We now have a button that registers the document. We have yet one more task: we

must change our document JavaScript so that it treats -1 as meaning “registered.”

There are two changes we need to make to the script.

We must change our initial if…else clause so that we increment nagCount only if its
value is not -1. A nagCount of -1 will remain so indefinitely:

if (global.nagCount == null) {
 global.nagCount = 0
 global.setPersistent(“nagCount”, true)
}
else {
 if (global.nagCount != -1)
 global.nagCount++
}

We also need to add -1 to the values that should be ignored by our switch statement:

switch (global.nagCount) {
 case -1:
 case 0:
 case 1:
 break

Next Page ->

Acumen Journal: Acrobat User 18

Creating a Nagware Document, Part 2

The Final Script So here is the final document script for our nagware document:

if (global.nagCount == null) { // Does nagCount not exist?
 global.nagCount = 0 // Doesn’t: create it
 global.setPersistent(“nagCount”, true)
}
else { // Does:
 if (global.nagCount != -1) // Not registered?
 global.nagCount++ // Nope: increment nagCount
}

if (global.nagCount > 2) // Opened more than twice?
 app.alert(“You haven’t paid for this document.\n
 Please pay me.”)

switch (global.nagCount) { // Examine nagCount’s value
 case -1: // Ignore these values
 case 0:
 case 1:
 case 2:
 case 3:
 break

Next Page ->

Sample File

This JavaScript is in this
month’s zip file with the
name NagFinal.js.

Acumen Journal: Acrobat User 19

Creating a Nagware Document, Part 2

 case 4: // First nag: discreet annotation
 this.addAnnot({
 page: 0,
 type: “FreeText”,
 rect: [206, 24, 406, 48],
 contents: “ Slacker! I need my money!”,
 fillColor: color.red,
 strokeColor: color.transparent,
 textSize: 10,
 width: 0,
 readOnly: true
 })
 break

 case 5: // 2nd nag: obtrusive annotation
 this.addAnnot({
 page: 0,
 type: “FreeText”,
 rect: [206, 500, 406, 550],
 contents: “I mean it! I need it now!”,
 fillColor: color.red,
 textSize: 30,
 width: 0,
 readOnly: true
 }) Next Page ->

Acumen Journal: Acrobat User 20

Creating a Nagware Document, Part 2

 break

 case 6: // 3rd nag: Show picture and beg
 var gigi = this.getField(“btnGigi”)
 var beg = this.getField(“txtBeg”)

 gigi.hidden = false
 beg.hidden = false
 break

 default: // Final nag: mask the pages.
 for (i = 0; i < this.numPages; i++) {
 this.addAnnot({
 page: i,
 type: “FreeText”,
 rect: [0, 0, 612, 730],
 alignment: 1,
 contents: “Alright. You asked for it.”,
 fillColor: color.white,
 textSize: 30,
 width: 0,
 readOnly: true
 })
 }
} Next Page ->

Acumen Journal: Acrobat User 21

Creating a Nagware Document, Part 2

Final Notes

Lock Your Doc Don’t forget to lock your
nagware document. Its
security settings should
prevent a user from
examining (or changing)
your JavaScripts.

Limitations Keep in mind that this
method of nagging does
not constitute complete
security for the document. Someone who is sufficiently determined and has some
programming skill can eventually remove the nags. The scripts’ intent is to make it
unavoidably clear that you expect to be paid for your work.

In that goal, this technique is entirely successful.

Return to Main Menu

PostScript Tech

Acumen Journal: PostScript Tech 22

Using EPS Files in Handwritten PostScript Code
There are many organizations that write their own PostScript code, rather than using
a printer driver. This is particularly common among companies that do variable data
printing.

Often, the PostScript document being created needs to contain artwork created in an
application such as Adobe Illustrator or Photoshop. This can lead to some headscratching,
the developers often wondering if they are going to need to implement, say, a TIFF
interpreter in PostScript.

The easiest way to support externally-created graphics is to export them from the
design application as Encapsulated PostScript; EPS files, as we shall see, are extremely
easy to embed in your own PostScript code. If you wish, and circumstances permit,
you can leave the EPS file in the original file and just embed a reference to that file
into your PostScript code.

This month, we shall discuss how to incorporate an EPS file as an illustration in your
own, handwritten PostScript code.

Next Page ->

Acumen Journal: PostScript Tech 23

Using EPS Files in Handwritten Code

Review: EPS
File Format We discussed EPS files in full detail in your PostScript class; you may want to review

your student notes for the full discussion.

As a brief reminder (and introduction for people who have unaccountably not taken
a PostScript class), let’s review the contents and structure of EPS files.

PostScript + Preview An Encapsulated PostScript file consists of two parts:

• The PostScript that should be used to produce the illustration at print time

• An optional preview graphic that is intended for the use of the importing application.

When you import an EPS file into Adobe InDesign, say, that program displays the preview on the
screen, giving you something you can drag around and resize as needed for the layout.

At print time, InDesign does the following:

• Works its way through the document, generating its own PostScript code

• When it encounters the imported EPS file, InDesign opens the EPS file, grabs the
PostScript code it contains, and sends that code to the printer. It preceeds the code with
a translate and scale that moves and resizes the EPS graphic as needed by the layout.

• InDesign then resumes creating its own PostScript code until the next EPS file.

Next Page ->

Acumen Journal: PostScript Tech 24

Using EPS Files in Handwritten Code

PostScript
Requirements The PostScript code in an EPS file is just regular PostScript, subject to three requirements:

1. The first line must be the following (though the numbers can be different):

 %!PS-Adobe-3.0 EPSF-3.0

 This indicates two things about this file: it’s a PostScript file adhering to the
Document Structuring Convention version 3.0 (or whatever); furthermore, it’s an
encapsulated PostScript file adhering to EPS spec version 3.0 (or whatever).

2. Somewhere among the comments at the beginning of the file,
there must be a BoundingBox comment:

 %%BoundingBox: xll yll xur yur

 The BoundingBox keyword is followed by four numbers, the User
Space x and y coordinates of the lower-left and upper-right
corners of the file’s bounding box (the rectangle that exactly
encloses the EPS graphic). This tells the importing application
where the EPS file prints on the page.

3. Finally, the PostScript code must be “well behaved,” that is, it
must do nothing that is inconsistent with being used as an illustration; it must
not erase the page, reinitialize the graphics state, or do anything else that would
make it difficult to import.
 Next Page ->

x
ll
,y

ll

x
ur

,y
ur

Acumen Journal: PostScript Tech 25

Using EPS Files in Handwritten Code

EPS File Format:
Microsoft Windows In Microsoft Windows, the EPS file on your disk may have two possible formats:

No Preview If there is no preview (remember, it’s optional), then the EPS file will be just a PostScript
file that starts with %!PS-Adobe-… etc.

Preview Present If there is a preview, then the EPS file will have three sections:

• A 30-byte header containing directory information (check your student notes for
the details).

• The PostScript code

• The preview as either a TIFF image or Windows metafile graphic.

The PostScript and preview may be in either order.

Next Page ->

Hdr. PostScript Preview

Acumen Journal: PostScript Tech 26

Using EPS Files in Handwritten Code

File Format: Macintosh The Macintosh has a unique file system. Every Macintosh file can have two separately-
addressable parts:

• A Data Fork, which corresponds to what would be the
file on other systems.

• A Resource Fork, which contains a collection of
programmer-defined bits of data, retrievable by type,
number, and (optionally) name.

One of Apple’s challenges in designing OS X was figuring out how to reconcile this
quite powerful, but idiosyncratic, file system with the UNIX underpinnings of the new
operating system.

Macintosh EPS files store the PostScript code in their data forks; the preview, if any, is
stored in the resource fork (as PICT resource #256, if you were curious).

Next Page ->

Data Fork
(PostScript)

Resource Fork
(Preview)

Mac
EPS File

Acumen Journal: PostScript Tech 27

Using EPS Files in Handwritten Code

File Format: All Others EPS files made on any system other than Mac or Windows (UNIX, for example) have
EPSI previews (“Encapsulated PostScript Screen Image”). An EPSI preview is simply a
screen image embedded in-line with the PostScript code as a series of comments.

The PostScript header (the series of comments at the beginning of the file) is followed
by a %%BeginPreview comment, which is followed, in turn, by hexadecimal image data:

%!PS-Adobe-3.0 EPSF-3.0
%%Creator: GIMP PostScript file
...
%%BoundingBox: 14 14 521 681
%%EndComments
%%BeginPreview: 255 256 1 256
% aaa
% fff
% aaa
% fff
...
%%EndPreview

Note that each line of image data begins with a percent sign so that a PostScript
interpreter will treat it as a comment.

See your student notes for the meaning of the numbers after the BeginPreview keyword.

Next Page ->

Acumen Journal: PostScript Tech 28

Using EPS Files in Handwritten Code

Using the EPS File To use an EPS file as a graphic in your own PostScript output, you need simply take
the PostScript code from the EPS file and place it in-line with your own PostScript:

...

... Your PostScript Code

...

... PostScript code from EPS file

...

... Your PostScript code, again

...

Preparing the
EPS File There is some initial preparation you may need to perform on the EPS file; what is

necessary depends upon the system on which the EPS file was created:

Windows If the EPS file came from a Windows system, then
you will need to strip off the header and preview.
Just open the EPS file in a text editor; you will see
some binary garbage in front of the %!PS-Adobe.

Next Page ->

Acumen Journal: PostScript Tech 29

Using EPS Files in Handwritten Code

There might be only a small amount of binary, as
at right, representing the 30-byte EPS header; on
the other hand, there may be several kilobytes of
binary data, consisting of both the EPS header and
the preview data. In either case, erase everything
up to (but not including) the “%!”.

If the initial binary data was small, as in the
illustration, then the preview still resides within the EPS file, following the PostScript.
Scroll to the end of the PostScript within the file (look for the “%%EOF”) and erase the
several kilobytes of binary stuff you find there.

Now, you are left with only the EPS file’s PostScript code, suitable for insertion into
your own PostScript program.

Macintosh There’s no preparation necessary before using a Macintosh-style EPS file. The preview
is nicely isolated in the file’s resource fork, which will be ignored by the text editor
you use to copy and paste the PostScript code into your own program.

Next Page ->

Acumen Journal: PostScript Tech 30

Using EPS Files in Handwritten Code

Everyone Else For UNIX-style EPS files, the only preparation worth mentioning might be to remove
the EPSI preview from within the PostScript code. (Why retain several kilobytes of
commented preview bitmap?)

This is easily done, since the EPSI preview is bounded by well-defined markers. The
preview data is preceedd by the %%BeginPreview comment and is terminated by the
%%EndPreview line.

Delete everything from %%Begin- to %%EndPrevew and you will be left with only the
usable PostScript code.

Next Page ->

Acumen Journal: PostScript Tech 31

Using EPS Files in Handwritten Code

Placing the File So we have now prepared our EPS file and are ready to use it in our PostScript code. We
shall need to do a bit of work before and after the EPS’ code in order to use it successfully.

Here’s what you need to put into your PostScript code to use a EPS file:

1. A %%BeginDocument DSC comment

2. A call to save

3. Calls to translate and scale (and maybe rotate) to reposition and resize the EPS
graphic as needed for your document.

4. Redefinitions of showpage and setpagedevice that render them harmless.

5. The EPS PostScript code.

6. A call to restore.

7. A %%EndDocument comment.

Let’s talk about these in a bit of detail.

1. %%BeginDocument This step is often omitted and, indeed, ignoring it will not prevent your EPS from
working. Still, it’s good programming style in PostScript to preceed embedded EPS
code with a %%BeginDocument and follow it with a %%EndDocument.

Next Page ->

Acumen Journal: PostScript Tech 32

Using EPS Files in Handwritten Code

These comments are, of course, part of the Document Structuring Convention, that
set of rules that all professional-grade PostScript should follow.

The BeginDocument comment has the following form:

 %%BeginDocument: MyIllustration.eps

Note that the keyword itself is followed by the name of the original EPS document.

2. Do a save You are about to embed in your program a clump of PostScript code of arbitrary
length and complexity. You will want to recover the VM used by this code and erase
whatever key-value pairs it may define. You do this, of course, by calling save before
the EPS code and restore afterward.

As you know, save returns a saveobject; we shall store this return value as a key-value
pair for easy recovery later:

 /preEPSState save def

Of course, the name “preEPSState,” above, is arbitrary; pick something descriptive that
you like.

Next Page ->

Acumen Journal: PostScript Tech 33

Using EPS Files in Handwritten Code

3. Position and
Resize the EPS The graphic produced by an EPS file, if left to itself, occupies a position on the page

described by the file’s BoundingBox comment:

 %%BoundingBox: xll yll xur yur

You will need to preceed the EPS file’s PostScript code with a set of calls to translate
and scale that moves the EPS graphic to the position and size you want for the final
illustration. This is a three step process (although one step may sometimes be omitted).

Presume that you want the lower left corner of the final illustration to be located at
xi , yi . Here’s what you would need to do to properly
place the EPS image:

1. Translate by xi yi . This moves
the origin of the EPS’ PostScript
code to the position you want
for the illustration.

 Note that this does not neces-
sarily place the graphic, itself,
where you want it; the EPS file
may not draw its contents at 0,0.

Next Page ->

x
ll
,y

ll

x
i
,y

i

x
i
 y

i
 translate

Acumen Journal: PostScript Tech 34

Using EPS Files in Handwritten Code

2. Scale by whatever amount is needed (call
it sx sy) to change the size of EPS graphic
to what you need for the illustration.

3. Translate by –xll –yll . This moves the EPS
graphic to the postiion you want for the
illustration.

 This third step can be omitted if the EPS
file draws its graphic at the origin, that is,
if the file’s xll and yll are both 0.

4. Redefine Operators There are two PostScript operators that a proper EPS file should never call, but that
do, nonetheless, occur in many Encapsulated PostScript files. The showpage and
setpagedevice operators are very inappropriate within an EPS file and will make the
file unuseable. A showpage in the EPS file would cause a premature page ejection;
setpagedevice will erase the entire page.

You must therefore defang the EPS file by redefining these operators to something harmless:

 /showpage { } def
 /setpagedevice /pop load def

These two lines redefine showpage to do nothing and setpagedevice to simply discard
its dictionary argument. You will get the original definitions back when you execute
the eventual restore. Next Page ->

x
i
,y

i

x
s
 y

s
 scale –x

ll
 –y

ll
 translate

Acumen Journal: PostScript Tech 35

Using EPS Files in Handwritten Code

You may wish to consult your level of personal paranoia to decide if there’s anything
else you want to redefine. I’ve seen PostScript output that redefines copypage, setdash,
and setlinecaps for example.

5. Embed the
PostScript Now you can place the PostScript code taken from the EPS file into your program.

6. Do a restore After the EPS code, execute restore, using the saveobject from your earlier call to save:

 preEPSState restore

This will reclaim the memory used by the EPS file’s code, discard any key-value pairs
defined in the EPS file, and cause showpage and setpagedevice to revert to their original
definitions.

7. %%EndDocument You should finish up the whole embedded EPS block with an EndDocument comment:

 %%EndDocument

Again, nothing will break if you don’t do this, but your friends will admire you greatly
if you include it.

Next Page ->

Acumen Journal: PostScript Tech 36

Using EPS Files in Handwritten Code

All together So here is what the EPS block should look like in your PostScript program:

 %%BeginDocument: MousyToes.eps
 /preEPSState save def % Initial save
 xi yi translate % Reposition and resize
 sx sy scale
 -xll -yll translate
 /showpage { } def % Defang
 /setpagedevice /pop load def
 ...
 ... EPS Code goes here
 ...
 preEPSState restore % Reclaim memory; erase defs
 %%EndDocument

That’s all there is to it. Easy, isn’t it?

Final Notes
EPS Files and Images In my Variable Data PostScript class, one of the most common questions people ask at the

beginning is “Are we going to see how to include TIFF files in our PostScript code? Please?”

Of course, they usually don’t care about TIFF, per se; they just need to embed images
supplied by their clients in the variable data documents they produce for their clients.

Next Page ->

Acumen Journal: PostScript Tech 37

Using EPS Files in Handwritten Code

PostScript has no direct support for TIFF, BMP, PNG, or any of the other common image
formats. But that’s alright; all image editing software will export your images to EPS
and then you can then use that image with the technique described in this article.

Externally-Stored EPS It may be convenient for you to leave the EPS PostScript code in an external file and
then simply execute it from within your code using run.

I refer you to the January 2002 Journal to see how to save PostScript code to your
printer’s hard disk. Having done so, instead of including the entire EPS PostScript
stream, you can simply execute the contents of the external file with a run:

 (MyExternalFile.ps) run

This is especially useful if this EPS file is used many times within the PostScript stream,
as is common in variable data jobs.

EPS:
A Force For Good If you do variable data or any other handwritten PostScript code, EPS is the greatest

thing since coffee. It allows you to effortlessly incorporate into your PostScript output
graphics and images from any professional software.

Return to Main Menu

Schedule of Classes, Dec 2004 – Mar 2005
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class
on the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student. Registration Info

PDF File Content
and Structure

Feb 21–24

PostScript
Foundations Jan 31–Feb 4

Variable Data
PostScript

Advanced
PostScript Mar 7–11

PostScript for
Support Engineers Dec 6–10 Mar 21–25

Jaws Development On-site only

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught occasionally in Costa Mesa, California, and on corporate
sites. Clicking on a course name below will take you to the class description on the
Acumen Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website regarding
setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. There is a 10% discount if three or more people from the same
organization sign up for the same class.

 Registration ->

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

New PDF Class Nothing too new this month. I am still in the early stages of laying out the sec-
ond PDF File Content and Structure class. The topic list is below; as before, if you
think something should be added to or dropped from this list, send an email to
john@acumentraining.com.

Preliminary Topic List Overprinting File Spec Patterns
CID Fonts Masked Images Composite Fonts
Halftones Digital Signatures Linearized PDF
Marked Content AcroForm Stroke Adjustment
Rendering Intents Transfer Functions Halftones
Smooth shading Shape dictionaries Text Knockout
Reference XObjects Layers Object streams
Cross reference streams Name Dictionaries More on data structures
BX & EX Return to First Page

What’s New?

Acumen Journal: What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you want
to move to Canada?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

EPS Bounding Box

x
ll
,y

ll

x
ur

,y
ur

Acumen Journal

Nag, 6th Opening

Acumen Journal

The Final Nag

	btnNextPg:
	btnHome:

