
Table of Contents

The Acrobat User JavaScript: Creating a Nagware PDF Document, Part 1
This month and next, we create a PDF-based shareware document that asks for
money. If ignored, the document becomes increasingly strident , eventually rendering
itself unreadable.

PostScript Tech Colorizing Images with Separation and DeviceN
This month we present a useful, though little-known technique, using
the Separation and DeviceN colorspaces to modify image colors.

Class Schedule Oct–Jan

What’s New? Still Working on PDF File Content and Structure 2
The second PDF File Content and Structure class will be ready early 2005.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 35 © 2004 John Deubert, Acumen Training

John Deubert’s Acumen Journal, September 2004

Acrobat User

Acumen Journal: Acrobat User 2

JavaScript: Creating a Nagware Document, Part 1
I have always been a supporter of the shareware concept. Create your product, post
it on-line, encourage people who like it to pay some reasonable—usually small—
amount of money for it. I always pay my shareware donation for any piece of software
that I find even occasionally useful.

In an effort to encourage us users to pay our shareware fees, many shareware programs
will periodically display a dialog box reminding you that you haven’t paid; this dialog
box stops appearing once you register the software and type in your serial number.
This category of shareware is often referred to as “nagware,” since it continues to nag
you until you finally cough up the fee.

Much the same principle can apply to documents. It is reasonable to distribute your
book electronically, let people read it, and ask them, if they liked it, to send you money.

In this issue and the next, we shall
see how to implement a “nagware”
document, a PDF file that periodically
reminds the reader to pay the author.
So that we can see several approaches
to this task, we are going to make
a PDF file that becomes progressively more strident in demanding funds and that
eventually renders itself unreadable.

Next Page ->

Acumen Journal: Acrobat User 3

The Project Over the course of these two issues, we are going to turn an existing PDF file into a
nagware file. If you want to follow along, you may use any PDF file you wish, although
the Acumen Training Resources page has appropriate before-during-and-after files.
(Look for the file “Nag_1.zip.”)

This file, pictured at right, will open without
complaint the first two times. On the third
opening, it will display the dialog box on the
previous page, asking for money. Each time
the file is opened thereafter, it will present an
increasingly obtrusive demand; eventually, the
file will blank out the pages so that the user can
no longer read the document.

We will finish by providing a “registration” button
that lets the User enter a serial number and that
will turn off the nagging.

Limitations The techniques we describe in these articles do not
provide complete document security; a determined,
sophisticated user could circumvent them. The
intent here is that of most shareware: to make it unavoidably, unambiguously
clear that, a User who likes the article and finds it useful should pay for it.
 Next Page ->

Creating a Nagware Document

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User 4

Reading Assignments As is true of all the Journal’s JavaScript articles, I assume you have
some basic experience with Acrobat JavaScript, equivalent to
having read my book Extending Acrobat Forms With JavaScript. In
particular, this article depends upon the following topics:

• The Acrobat global object – Actually, I did not discuss this in
my book. However, it was the topic of the August 2004 Journal
article, which you can get from the Acumen Training website.

• Document JavaScripts – The same August 2004 Journal reviews
document JavaScripts, as well.

• The JavaScript switch statement – I’ll be presenting a reminder in this article, but this
is a mildly complicated operator that really does need a more in-depth discussion.
Extending Acrobat Forms… covers it thoroughly, but any book on JavaScript should
describe it reasonably well.

You may also want to get a copy of the Acrobat JavaScript Object Reference (AJOR) for
reading afterward. This is available for the downloading from Adobe’s website.

Next Page ->

Creating a Nagware Document

http://www.acumentraining.com/AcumenJournal.html

Acumen Journal: Acrobat User 5

Overview of
the Process

Conceptual Our approach to this task will be to
keep track of the number of times our
document has been opened. If the
document has been opened only a
couple of times, then we’ll do nothing;
let the User read unannoyed. The third
time Users open the file, we’ll
present them with the dialog box
asking for money; the fourth time,
we’ll add a message to the page;
and so forth.

Each time a User opens the
document he or she will get an additional nag of some form or other. Eventually, we’ll
just white out the page, so that they can no longer read the document.

An important design goal is that they should not be able to reset the nagging by just
closing the document without saving it or downloading a fresh copy of the PDF file.
The mechanism that decides whether they can see the file, and with what level of
annoyance, should somehow be associated with the computer.

Next Page ->

Creating a Nagware Document

Secure Your Document

A perhaps obvious point
is that the final Acrobat
file you distribute should
be password protected so
that the user can’t examine,
change, or delete your
JavaScripts.

The sample files have not
been protected, because they
are primarily teaching tools.

The January 2003 Acumen
Journal describes how to
apply password protection
to a PDF file. (It’s a bit dated,
but most of what it describes
has changed only
cosmetically.)

Acumen Journal: Acrobat User 6

JavaScript Overview We are going to implement this nagging as a Document JavaScript that will execute
each time the file is opened.

The first time our script runs, it is going create a new property of the Acrobat JavaScript
global object. We shall use this property, which we’ll call nagCount, to keep track
of how many times the document has been opened. (Again, see the August 2004
Journal for a discussion of the global object and a review of document JavaScripts.)

Our script will do the following:

Create or increment
global.nagCount 1. Check to see if the property global.nagCount exists.

2. If the property does not exist, create it with a value of 1.

3. If the property does already exist, add 1 to its value.

Nag, as needed 4. If global.nagCount is 1 or 2, do nothing.

5. If global.nagCount is 3 or more, display the “Pay me” dialog box.

6. If global.nagCount is 4, add the “Pay me” message to the page.

7. etc.

Let’s look at the code.
 Next Page ->

Creating a Nagware Document

Acumen Journal: Acrobat User 7

Code, First Pass Our first version of our document JavaScript will
carry out only steps 1 through 5 on the previous
page: we’ll create or increment global.nagCount and
then either do nothing or display the nag dialog
box, depending upon whether the document
has been opened once, twice, or three times. You
can see this script operating in the file Nag 1.pdf,
among the sample files.

// If global.nagCount doesn’t exist,
// then create it.
if (global.nagCount == null) {
 global.nagCount = 1
 global.setPersistent(“nagCount”, true)
}
else { // Otherwise: increment it
 global.nagCount++
}

if (global.nagCount > 2) { // Is nagCount greater than 2?
 // Yes: display alert
 app.alert("You haven’t paid for this document.\n Pay me.")
}
 Next Page ->

Creating a Nagware Document

Resetting the Nags

Each of the sample files has
a Reset nagCount button at
the top. Clicking this button
resets the value of global.
nagCount to zero.

You should click this each
time you finish using one
of the example documents
and are going to move on
to the next. Otherwise, since
all the example files use
the same global property,
it will be harder to see how
the nagging progresses on
successive openings.

Acumen Journal: Acrobat User 8

Step by Step
Create nagCount, if nec. if (global.nagCount == null) { // Does nagCount exist?

 global.nagCount = 1 // No: create it
 global.setPersistent("nagCount", true)
}

The first time the User opens this PDF file, nagCount won’t exist—that is, it will be
null—and so we must create it, giving it a value of 1 (indicating this is the first time
we have opened the file). This is exactly what our if statement does:

• Check to see if global.nagCount is null.

• If so, do the following:

- Set nagCount to 1. This creates the new global property.

- Make it persistent, so that it will survive from one opening of the document to
the next. (We don’t want nagCount to disappear when the user closes the file.)

Otherwise, increment it else {
 global.nagCount++
}

If global.nagCount does exist (that is, our if statement returned false), then we increment
its value with the ++ operator. The nagCount property now reflects the number of
times the document has been opened.

Next Page ->

Creating a Nagware Document

Acumen Journal: Acrobat User 9

Creating a Nagware Document

Nag, if appropriate if (global.nagCount > 2) {
 app.alert("You haven’t paid for this document.\nPay me.")
}

If global.nagCount has a value greater
than 2, indicating the PDF file has been
opened three times or more, then we
display the alert box, asking for money.

Thus we implement our first nag.

A Second Nag If the User opens our document a
fourth time, we are going to add a
message at the bottom of the first
page, as at right.

We are going to do this by adding
an annotation—a ”comment,” in Acrobat 6 terminology—to the bottom of the page.
Our JavaScript will do this with a call to the Acrobat Doc object’s AddAnnot method.

Next Page ->

Acumen Journal: Acrobat User 10

Creating a Nagware Document

Doc.addAnnot this.addAnnot({
 page: 0, // Add to first page
 type: "FreeText", // Use this annotation type
 rect: [206, 24, 406, 48], // Position on the page
 contents: "Slacker! I need my money!", // Comment text
 ... // Other properties, as needed
})

The Doc object’s addAnnot method creates a new annotation somewhere in the
document. You must specify the type of annotation you want to create, the page on
which the annotation resides, the position on the page, and the text that makes up
the comment. You may also dictate a variety of properties for the resulting annota-
tion, including color, font, text size, etc. These are all properties of the annotation
object created by the addAnnot method.

In the example above, we are making use of a JavaScript syntax that allows you to
specify named arguments for an method call. Generically, the syntax looks like this:

obj.methodName({
 argumentName: value,
 argumentName: value,
 ...
})

ArgumentName:value pairs must be separated by commas and their order is unimportant.
 Next Page ->

Acumen Journal: Acrobat User 11

Creating a Nagware Document

Our Second Nag Code For our second nag, we shall check to see if the document has been opened four
times; If so, we’ll use the addAnnot method to add a nag message to the first page of
the document. The code below—and all our future code—omits the initial if…else
block that creates or increments nagCount.

if (global.nagCount > 2) { // nagCount greater than 2?
 app.alert("You haven’t paid for this document.\n Pay me.")
}
if (global.nagCount == 4) { // Fourth time opened?
 this.addAnnot({ // Yes: add annotation
 page: 0, // Put on first page
 type: "FreeText", // Text on page
 rect: [206, 24, 406, 48], // Location on the page
 contents: "Slacker! I need my money!", // The text
 fillColor: color.red, // Background color
 width: 0, // No border
 textSize: 10, // Text point size
 readOnly: true // No user changes
 })
}

Note that we are calling the addAnnot method in the this object, which in this context
is referring to the current document.

Next Page ->

Acumen Journal: Acrobat User 12

Creating a Nagware Document

Annotation Properties In our code, we set the following annotation properties:

page: 0, The page property specifies the page on which the annotation resides.
Remember that within a JavaScript, pages are numbered starting with zero.
Our annotation will be placed on page 0, that is, the first page of the document.

type: “FreeText”,
The type property indicates what kind of annotation we want to create.
Acrobat JavaScript defines a set of standard names for the various annotation
types (“Line”, “Text”, etc.). We are placing a “FreeText” annotation on the
page, like the one at left; this is a text note that sits directly on the page,
rather than within its own frame.

rect: [206, 24, 406, 48],
This identifies where the annotation
should be located on the page.
The four numbers are the x,y coor-
dinates of the lower left and upper
right corners of the annotation. These are measured in points (1/72 inch)
from the lower left corner of the page.

contents: “Slacker! I need my money!”,
This is the text that should appear in the annotation.

Next Page ->

Slacker! I need my money!

24

406206

48

Acumen Journal: Acrobat User 13

Creating a Nagware Document

fillColor: color.red,
This is the background color we want for the annotation. The value for
this can be any valid Acrobat JavaScript color specification (see Extending
Acrobat Forms or the AJOR). In this case, I am using one of the predefined
colors that reside as properties in the color class. Other predefined colors
include color.blue, color. magenta, and color.transparent.

 Had we wished (I’m not doing so here), we could have also defined a
strokeColor property specifying the color of the annotation’s border.

width: 0, This is the width of the border. Setting this to zero indicates we don’t want
a border for our annotation.

textSize: 10, Here we are specifying the point size we want for the annotation’s text.
We could also have specified the textFont property, setting it equal to the
PostScript name of the font the annotation should use.

 textFont: "Optima-Oblique",

readOnly: true
Finally and importantly, we set the annotation’s readOnly property to true,
preventing the User from selecting, moving, or otherwise changing the
annotation.

 Notice that this property specification does not end with a comma,
because it is the final property we are specifying.

Next Page ->

Other Properties

Annotation objects have
several other properties
that presumably can be set
by doc.addAnnot. These are
documented in the Acrobat
JavaScript Object Reference.

Acumen Journal: Acrobat User 14

Creating a Nagware Document

Third Nag The fifth time the User opens the document, we shall display an annotation in a more
prominent location on the page, so they can’t ignore it. Our script now looks like this
(abbreviating the parts we’ve already seen):

if (global.nagCount == 4) { // Fourth time opened?
 this.addAnnot({ // Yes: add annotation
 ...
 })
}
else if (global.nagCount == 5) { // Fifth time opened?
 this.addAnnot({ // Yes: add annotation
 page: 0,
 type: "FreeText",
 rect: [206, 500, 406, 550],
 contents: "I mean it! I need it now!",
 fillColor: color.red,
 textSize: 30,
 width: 0,
 readOnly: true
 })
}

if global.nagCount is not 4, then the else clause checks to see if it is instead 5. If so, we
add an annotation in the middle of the page. Pretty straightforward.
 Next Page ->

Acumen Journal: Acrobat User 15

Creating a Nagware Document

The Switch Statement
Too many if…else if’s In our script we used an if…else if block to decide what type of nag to use:

if (global.nagCount == 4) { // Fourth time opened?
 ...
}
else if (global.nagCount == 5) { // Fifth time opened?
 ...
}

This works perfectly well for the two instances we have so far, but will quickly become
unwieldy as we add more nagCount values to accommodate:

if (global.nagCount == 4) { // Fourth time opened?
}
else if (global.nagCount == 5) { // Fifth time opened?
}
else if (global.nagCount == 6) { // Sixth time opened?
}
else if (global.nagCount == 7) { // Seventh time opened?
}

JavaScript provides a somewhat more readable alternative to such a string of if…else if
blocks: the switch statement.

Next Page ->

Acumen Journal: Acrobat User 16

Creating a Nagware Document

switch…case We discuss the switch statement in Extending Acrobat Forms…, but as a reminder:

The JavaScript switch statement allows you to specify a variable or property and a
series of case statements, one for each possible value for that variable. Associated
with each case is a set of JavaScript statements that should be executed if the variable
has the corresponding value. Each of these blocks of JavaScript is terminated with a
break command.

Thus, our earlier cascaded if…else if blocks now become:

switch (global.nagCount) { // Look at global.nagCount
 case 4: // Is it 4?
 …JS statements… // If so, do this
 break
 case 5: // Is it 5?
 …JS statements… // If so, do this
 break
 case 6: // Is it 6?
 …JS statements… // If so, do this
 break
}

Overall, the switch…case block is much more readable than the set of if…else if statements.

Next Page ->

Acumen Journal: Acrobat User 17

Creating a Nagware Document

Nagging With Switch Our current level of nagging, carried out using switch, becomes:

if (global.nagCount > 2) // Still present the dialog box
 app.alert("You haven’t paid for this document.\nPay me.")

switch (global.nagCount) { // Examine global.nagCount
 case 4: // If it’s 4, do the following:
 this.addAnnot({
 page: 0,
 ...
 })
 break

 case 5: // If it’s 5, do the following:
 this.addAnnot({
 page: 0,
 ...
 })
 break
}

Now, to add new levels of nag to our file, we need simply add more case statements
to our switch block. The current version of our JavaScript is in the sample file Nag 3a.pdf.
I’ve also included it as a separate JavaScript file, Nag 3a.js.
 Next Page ->

Acumen Journal: Acrobat User 18

Creating a Nagware Document

Out of Time There are still techniques to discuss, but, alas, we are out of time for this month.

Next issue we’ll finish up by doing the following:

• Add nag 4, which will display a pitiable picture
of a small child searching the beach for food
and ask the User if it’s right that the author’s
family should be reduced to such extremes.

• Add a final nag, which will simply white out all
of the pages in the document so it becomes
unreadable.

• Add a “Register” button, which will let the User
enter a serial number—which was presumably emailed to the User upon receipt of
the cash—and then will disable all the nags and render the document usable from
then on.

But that’s all next issue.

See you then.

Return to Main Menu

PostScript Tech

Acumen Journal: PostScript Tech 19

Colorizing Images With the Separation Color Space
I am asked about this task in class fairly
often: if you have data for a grayscale
image, how can you print the image using
some other color? That is, how do you
print the image as shades of green, say,
rather than shades of gray?

There are several possible approaches to
this problem. By far the easiest and most
flexible uses the Separation color space.

This month we shall see how to use the
Separation color space to carry out this task
and a few variations, such as simulating
print against a colored background. We’ll
also look at how to modify color images
using the DeviceN colorspace.

Next Page ->

Files on Website

As always, the examples
for this month’s article are
available on the Acumen
Training website’s Resources
page. Look for the file
ColorizingImages.zip.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech 20

Colorizing Images With the Separation Color Space

Separation
Color Space The technique we are discussing uses the Separation color space to modify the

interpretation of the grayscale image data. As you may recall from your PostScript
class, Separation color space allows you to specify color in terms of a single named
colorant. Although it was originally intended to support printers with highlight colors,
it is routinely used in PostScript output to support spot colors.

You declare that you want to use Separation color space with a call to setcolorspace,
of course:

 [/Separation
 /InkName
 /AltSpace
 { tint transform }
] setcolorspace

The four entries in the colorspace array are:

/Separation
The name “/Separation”, indicating the colorspace we want to use.

/InkName The name of the ink we want to use to specify color. This can be any
arbitrary name and, in particular, does not need to correspond to inks
available on the current printer. The colorant name entry may be either a
string or a name object.
 Next Page ->

Acumen Journal: PostScript Tech 21

Colorizing Images With the Separation Color Space

 If the current device does have an ink with this name, then PostScript will
lay that ink onto the page. On the other hand, in the more common case
in which there is no equivalent ink available, then the final two entries in
the colorspace array provide a fallback strategy.

/AltSpace This specifies an alternative colorspace; if the ink named in the colorspace
array is not available on the PostScript device (which is usually the case),
then this colorspace will be used instead.

{ tint xform }
This “tint transform” procedure converts color values intended for our spot
color into a color specification appropriate to the alternative colorspace.

Having specified our colorspace, the setcolor operator will expect a “tint value,” a color
value intended for the spot color.

 .75 setcolor

If the ink is available, then we will paint the page with the specified tint of that ink;
otherwise, setcolor will use the tint transform to convert the tint value into the alter-
native colorspace and we will paint the page with that alternative color.

For Example On the next page is a PostScript program that defines a “Turquoise” colorspace and
then attempts to draw three Turquoise rectangles on the page. If Turquoise ink is not
available on the PostScript device, then we shall substitute green. (Green doesn’t look
much like turquoise, I admit, but I’m trying to keep the code simple.) Next Page ->

Acumen Journal: PostScript Tech 22

Colorizing Images With the Separation Color Space

A Turquoise Colorspace [/Separation
 /Turquoise % Use a "Turquoise" ink
 /DeviceRGB % If no Turq available, use RGB instead
 { 0 exch 0 } % Convert Turq values to RGB
] setcolorspace

1 setcolor % Turquoise rectangles, printing as green
100 600 200 100 rectfill

.67 setcolor
100 475 200 100 rectfill

.33 setcolor
100 350 200 100 rectfill

Here our call to setcolorspace defines a colorant named “Turquoise.”
Since there is no turquoise ink available, every time we call setcolor,
that operator pushes onto the stack the turquoise value we asked
for and then executes the tint transform,

{ 0 exch 0 }

This pushes a zero onto the stack on top of the turquoise value, exchanges the two
numbers (so that red is 0 and green is our turquoise value), and then pushes another
zero on the stack to serve as our blue. Next Page ->

Acumen Journal: PostScript Tech 23

Colorizing Images With the Separation Color Space

Colorizing
Gray Images Let’s apply this to grayscale images.

Here is some typical PostScript image code:

100 300 translate
396 293 scale
<<
 /ImageType 1
 /Width 396
 /Height 293
 /BitsPerComponent 8
 /Decode [0 1]
 /ImageMatrix [396 0 0 -293
0 293]
 /DataSource currentfile /ASCIIHexDecode filter
>> image
686968696968686A6A6A6B6A6A6968686A686A61485F716F70717373737
374665...
...38080787E807E8B6B63524457413C3B4447
> % ASCIIHexDecode end-of-data marker
showpage

Next Page ->

Acumen Journal: PostScript Tech 24

Colorizing Images With the Separation Color Space

For the purpose of this article, the most important characteristic of the image operator
is that it interprets image data in terms of the current colorspace. Because the default
imagespace is DeviceGray, the image operator will interpret its data as grayscale
information unless otherwise informed. If we were printing an RGB image, we would
need to precede our call to image with /DeviceRGB setcolorspace.

Using Separation So let’s mess with the image operator’s mind a little; let’s tell it that the incoming
image data is turquoise data:

[/Separation % This is our earlier Turquoise colorspace
 (Turquoise)
 /DeviceRGB
 { 0 exch 0 }
] setcolorspace

396 293 scale
<< /ImageType 1 % Our call to image is unchanged
 /Width 396
 ...
 /DataSource currentfile /ASCIIHexDecode filter
>> image
686968696968686A6A6A6B6A...

Next Page ->

Acumen Journal: PostScript Tech 25

Colorizing Images With the Separation Color Space

Neither call to the image operator nor the
image data have changed. What we have done
is told the image operator to treat the image
data in terms of our Turquoise colorspace. Each
byte is now treated as a tint value that will be
converted to green by the colorspace’s tint
transform.

Mimicking a
colored background It’s cute enough for its own sake to print a gray

image in shades of green. However, this has a very real application: simulating printing
the image on colored paper.

This is a common requirement for people who print directories, such as the Yellow
Pages, that are printed on a colored background. These directories were once printed
on colored paper; nowadays they are often printed on white paper, each page of the
directory being completely tinted with yellow (or whatever) ink.

To maintain the traditional look of a directory printed on colored paper, images must
be converted from grayscale to shades of whatever color is used for the directory paper.

For Example On the next page, we simultate printing our image against a yellow background. The
background tint is a 35% yellow.

Next Page ->

Acumen Journal: PostScript Tech 26

Colorizing Images With the Separation Color Space

[/Separation
 (YandB) % “Yellow and Black”
 /DeviceCMYK
 { 0 0 .35 4 -1 roll }
] setcolorspace

396 293 scale
<<
 /ImageType 1
 /Width 396
 /Height 293
 /BitsPerComponent 8
 /Decode [1 0]
 /ImageMatrix [396 0 0 -293 0 293]
 /DataSource currentfile /ASCIIHexDecode filter
>> image
686968696968686A6A6A6B6A6A...

This time, we are defining a spot color named “YandB” (for “Yellow and Black”) that maps
into CMYK. To mimic printing a grayscale image against a yellow background, I am using the
original gray data for the black value and adding a 35% yellow component to each pixel.
That is, the original gray value (call it g) becomes a CMYK value of [0 0 .35 g].

 Next Page ->

Acumen Journal: PostScript Tech 27

Colorizing Images With the Separation Color Space

What About
Color Images?

DeviceN ColorSpace You can do something similar with color images, simulating printing against a colored
background, using Separation colorspace’s younger brother, DeviceN.

DeviceN is a LanguageLevel 3 generalization of Separation, allowing you to specify
color in terms of an arbitrary number of named colorants. The call to setcolorspace
looks like this:

 [/DeviceN
 [/InkName0 /InkName1 ...]
 /AltSpace
 { tint transform }
] setcolorspace

In this case, the array elements are:

/DeviceN The name of the colorspace.

[/InkName0 …]
An array of ink names (the “colorant array”) that we shall use to specify
color. The setcolor operator will later expect one argument on the operand
stack for each ink named in this array.

 Next Page ->

Acumen Journal: PostScript Tech 28

Colorizing Images With the Separation Color Space

altSpace The alternative colorspace. This is the colorspace that will be used if any of
the colorants named in the colorant array are missing.

{tint xform} A tint transform procedure that converts a color specification intended for our
named colorants into color values appropriate to the alternative colorspace.

Now we can play the same trick with a CMYK color image that we did earlier with a
grayscale image: add ink to the yellow channel.

An Example Here’s our original CMYK image, omitting routine items like the scale and translate:

/DeviceCMYK setcolorspace

<< /ImageType 1
 /Width 181
 /Height 343
 /BitsPerComponent 8
 /Decode [0 1 0 1 0 1 0 1]
 /ImageMatrix [181 0 0 -343 0 343]
 /DataSource currentfile
 /ASCII85Decode filter /LZWDecode filter
>> image
J,g]g3$]7K#D>EP:q1$o*=mro@So+\<\5,H7U....

Next Page ->

Acumen Journal: PostScript Tech 29

Colorizing Images With the Separation Color Space

Colorizing Here’s the code that prints the image against a simulated 35% yellow background:

[/DeviceN % Our colorspace name
 [/c /m /y /k] % Stand-in colorant names
 /DeviceCMYK % Use CMYK as the alternative
 { exch .35 add exch } % Add .35 to the yellow value
] setcolorspace

% The call to image is unchanged
<< /ImageType 1
 /Width 181
 ...
>> image
J,g]g3$]7K#D>EP:q1$o*=mro@So+\<\5,H7U....

Granted, the resulting image is no longer as pleasing, aesthetically;
I’m being very simple-minded in my simulation. But the result does
look as though it’s been printed against a yellow background.

I’ll leave it to you to come up with a better tint transform.

 Next Page ->

Acumen Journal: PostScript Tech 30

Colorizing Images With the Separation Color Space

Separation: Not
Just Spot Colors The moral of this article is that the Separation

and DeviceN colorspaces have uses beyond
just supporting spot colors and hifi separations.
You can use them with images to colorize,
apply color correction, strip alpha channels,
and a wide variety of other tasks.

Return to Main Menu

Schedule of Classes, Oct 2004 – Jan 2005
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class
on the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student. Registration Info

PDF File Content
and Structure

Nov 8–11

PostScript
Foundations

Oct 11–15 Jan 10–14

Variable Data
PostScript

Advanced
PostScript Jan 24-28

PostScript for
Support Engineers Dec 13–17

Jaws Development On-site only

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught occasionally in Costa Mesa, California, and on corporate
sites. Clicking on a course name below will take you to the class description on the
Acumen Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website regarding
setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. There is a 10% discount if three or more people from the same
organization sign up for the same class.

 Registration ->

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

New PDF Class Nothing too new this month. I am still in the early stages of laying out the sec-
ond PDF File Content and Structure class. The topic list is below; as before, if you
think something should be added to or dropped from this list, send an email to
john@acumentraining.com.

Preliminary Topic List Overprinting File Spec Patterns
CID Fonts Masked Images Composite Fonts
Halftones Digital Signatures Linearized PDF
Marked Content AcroForm Stroke Adjustment
Rendering Intents Transfer Functions Halftones
Smooth shading Shape dictionaries Text Knockout
Reference XObjects Layers Object streams
Cross reference streams Name Dictionaries More on data structures
BX & EX Return to First Page

What’s New?

Acumen Journal: What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you yearn
for the simpler, easier days of your youth?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Nagware Document, Before Nags

	btnMagMinus 10:
	btnMagMinus 6:
	btnNextPg:
	btnHome:

